Skip to main content
Log in

Gold nanocluster-europium(III) ratiometric fluorescence assay for dipicolinic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A ratiometric fluorescence assay was designed for determination of dipicolinic acid (DPA), a spore-specific compound which is used as a biomarker for Bacillus anthracis spores for food and medical product safety analysis. The dual-channel fluorescence probe integrates two fluorescent materials, Eu3+ ion and gold nanocluster (Au NC). The Au NC is used as a reference channel to measure background noise and the Eu3+ ion as the DPA-specific response signal channel. The probe was prepared through simply combing bovine serum albumin (BSA)-scaffolded Eu3+ ion and Au NCs. When excited at 530 nm, in the presence of DPA, the fluorescence signals of Eu3+ ion at 595, 617, and 695 nm increased significantly while the 650 nm signal of Au NC reference remained relatively constant. This fluorescence probe has good photo-stability and also displays good selectivity and high sensitivity for DPA with a low detection limit of 0.8 μM. The linear range of the ratiometric probe for DPA is 1–50 μM. For determination of DPA released during the germination of Bacillus subtilis spores, the detection results were in agreement with measurements by conventional calorimetry assay. The method may have potential for measuring the level of contamination and germination by spores.

Dual-channel fluorescence biosensor was designed to detect dipicolinic acid, a spore-specific compound which is used as a biomarker for Bacillus anthracis spores for food and medical product safety analysis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yao M, Huang J, Deng Z, Jin W, Yuan Y, Nie J, Wang H, Du F, Zhang Y (2020) Transforming glucose into fluorescent graphene quantum dots via microwave radiation for sensitive detection of Al3+ ions based on aggregation-induced enhanced emission. Analyst 145:6981–6986

  2. Zhang K, Zeng K, Shen C, Tian S, Yang M (2018) Determination of protein kinase A activity and inhibition by using hydroxyapatite nanoparticles as a fluorescent probe. Microchim Acta 185(4):225

    Article  Google Scholar 

  3. Li Y, Shen C, Li X, Yang M, Shao C (2018) Hydroxyapatite nanoparticle based fluorometric determination and imaging of cysteine and homocysteine in living cells. Microchim Acta 185(5):271

    Article  Google Scholar 

  4. Yang Z-R, Wang M-M, Wang X-S, Yin X-B (2017) Boric-acid-functional lanthanide metal–organic frameworks for selective ratiometric fluorescence detection of fluoride ions. Anal Chem 89(3):1930–1936

    Article  CAS  PubMed  Google Scholar 

  5. Edwardson TG, Mori T, Hilvert D (2018) Rational engineering of a designed protein cage for siRNA delivery. J Am Chem Soc 140(33):10439–10442

    Article  CAS  PubMed  Google Scholar 

  6. Liu Z, Jin W, Wang F, Li T, Nie J, Xiao W, Zhang Q, Zhang Y (2019) Ratiometric fluorescent sensing of Pb2+ and Hg2+ with two types of carbon dot nanohybrids synthesized from the same biomass. Sensor Actuator B Chem 296:126698

  7. Lee KL, Murray AA, Le DH, Sheen MR, Shukla S, Commandeur U, Fiering S, Steinmetz NF (2017) Combination of plant virus nanoparticle-based in situ vaccination with chemotherapy potentiates antitumor response. Nano Lett 17(7):4019–4028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ganganboina AB, Dutta Chowdhury A, R-a D (2018) N-doped graphene quantum dots-decorated V2O5 nanosheet for fluorescence turn off–on detection of cysteine. ACS Appl Mater Interfaces 10(1):614–624

    Article  CAS  PubMed  Google Scholar 

  9. Zhao J, Gao J, Xue W, Di Z, Xing H, Lu Y, Li L (2018) Upconversion luminescence-activated DNA nanodevice for ATP sensing in living cells. J Am Chem Soc 140(2):578–581

    Article  CAS  PubMed  Google Scholar 

  10. Zhu S, Zhuo Y, Miao H, Zhong D, Yang X (2015) Detection of mercury (II) by DNA templated gold nanoclusters based on forming thymidine–Hg2+−thymidine duplexes. Luminescence 30(5):631–636

    Article  CAS  PubMed  Google Scholar 

  11. Ding S-N, Li C-M, Gao B-H, Kargbo O, Wan N, Chen X, Zhou C (2014) Probing phosphate ion via the europium (III)-modulated fluorescence of gold nanoclusters. Microchim Acta 181(15–16):1957–1963

    Article  CAS  Google Scholar 

  12. Feng L-P, Yang J-N, Zhang S, Zhang L-X, Chen X, Li P, Gao Y, Xie S-J, Zhang Y, Wang H (2020) A capillary-based fluorimetric platform for the evaluation of glucose in blood using gold nanoclusters and glucose oxidase in the ZIF-8 matrix. Analyst 145(15):5273–5279

    Article  CAS  PubMed  Google Scholar 

  13. Cruz-Alonso M, Fernandez B, García M, Hc G-I, Pereiro R (2018) Quantitative imaging of specific proteins in the human retina by laser ablation ICPMS using bioconjugated metal nanoclusters as labels. Anal Chem 90(20):12145–12151

    Article  CAS  PubMed  Google Scholar 

  14. Yamamoto H, Yano H, Kouchi H, Obora Y, Arakawa R, Kawasaki H (2012) N, N-Dimethylformamide-stabilized gold nanoclusters as a catalyst for the reduction of 4-nitrophenol. Nanoscale 4(14):4148–4154

    Article  CAS  PubMed  Google Scholar 

  15. Liang R, Xie J, Li J, Wang K, Liu L, Gao Y, Hussain M, Shen G, Zhu J, Tao J (2017) Liposomes-coated gold nanocages with antigens and adjuvants targeted delivery to dendritic cells for enhancing antitumor immune response. Biomaterials 149:41–50

    Article  CAS  PubMed  Google Scholar 

  16. Chen TH, Tseng WL (2012) (Lysozyme type VI)-stabilized Au8 clusters: synthesis mechanism and application for sensing of glutathione in a single drop of blood. Small 8(12):1912–1919

  17. Zhuo Y, Yi W-J, Lian W-B, Yuan R, Chai Y-Q, Chen A, Hu C-M (2011) Ultrasensitive electrochemical strategy for NT-proBNP detection with gold nanochains and horseradish peroxidase complex amplification. Biosens Bioelectron 26(5):2188–2193

    Article  CAS  PubMed  Google Scholar 

  18. Li Z-Y, Wu Y-T, Tseng W-L (2015) UV-light-induced improvement of fluorescence quantum yield of DNA-templated gold nanoclusters: application to ratiometric fluorescent sensing of nucleic acids. ACS Appl Mater Interfaces 7(42):23708–23716

    Article  CAS  PubMed  Google Scholar 

  19. Ju YJ, Li N, Liu SG, Han L, Xiao N, Luo HQ, Li NB (2018) Ratiometric fluorescence method for malachite green detection based on dual-emission BSA-protected gold nanoclusters. Sensors Actuators B Chem 275:244–250

    Article  CAS  Google Scholar 

  20. West AL, Griep MH, Cole DP, Karna SP (2014) DNase 1 retains endodeoxyribonuclease activity following gold nanocluster synthesis. Anal Chem 86(15):7377–7382

    Article  CAS  PubMed  Google Scholar 

  21. Sheng J, Jiang X, Wang L, Yang M, Liu Y-N (2018) Biomimetic mineralization guided one-pot preparation of gold clusters anchored two-dimensional MnO2 nanosheets for fluorometric/magnetic bimodal sensing. Anal Chem 90(4):2926–2932

    Article  CAS  PubMed  Google Scholar 

  22. Liu B, Shen H, Hao Y, Zhu X, Li S, Huang Y, Qu P, Xu M (2018) Lanthanide functionalized metal–organic coordination polymer: toward novel turn-on fluorescent sensing of amyloid β-peptide. Anal Chem 90(21):12449–12455

    Article  CAS  PubMed  Google Scholar 

  23. Kort R, O’brien AC, Van Stokkum IH, Oomes SJ, Crielaard W, Hellingwerf KJ, Brul S (2005) Assessment of heat resistance of bacterial spores from food product isolates by fluorescence monitoring of dipicolinic acid release. Appl Environ Microbiol 71(7):3556–3564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109(9):4283–4374

    Article  CAS  PubMed  Google Scholar 

  25. Lin B, Zhang T, Xin X, Wu D, Huang Y, Liu Y, Cao Y, Guo M, Yu Y (2019) Europium (III) modified silicone nanoparticles for ultrasensitive visual determination of tetracyclines by employing a fluorescence color switch. Microchim Acta 186(7):442

    Article  Google Scholar 

  26. Zhang C, Zhang H, Yu Y, Wu S, Chen F (2019) Ratio fluorometric determination of ATP base on the reversion of fluorescence of calcein quenched by Eu (III) ion using carbon dots as reference. Talanta 197:451–456

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H, Jiang J, Gao P, Yang T, Zhang KY, Chen Z, Liu S, Huang W, Zhao Q (2018) Dual-emissive phosphorescent polymer probe for accurate temperature sensing in living cells and zebrafish using ratiometric and phosphorescence lifetime imaging microscopy. ACS Appl Mater Interfaces 10(21):17542–17550

    Article  CAS  PubMed  Google Scholar 

  28. Li Y, Li X, Wang D, Shen C, Yang M (2018) Hydroxyapatite nanoparticle based fluorometric turn-on determination of dipicolinic acid, a biomarker of bacterial spores. Microchim Acta 185(9):435

    Article  Google Scholar 

  29. Yilmaz MD, Oktem HA (2018) Eriochrome black T–Eu3+ complex as a ratiometric colorimetric and fluorescent probe for the detection of dipicolinic acid, a biomarker of bacterial spores. Anal Chem 90(6):4221–4225

    Article  CAS  PubMed  Google Scholar 

  30. Liang X-S, Liu C, Long Z, Guo X-H (2018) Rapid and simple detection of endospore counts in probiotic Bacillus cultures using dipicolinic acid (DPA) as a marker. AMB Express 8(1):101

    Article  PubMed  PubMed Central  Google Scholar 

  31. Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101(3):514–525

    Article  CAS  PubMed  Google Scholar 

  32. Hazan R, Que Y-A, Maura D, Rahme LG (2012) A method for high throughput determination of viable bacteria cell counts in 96-well plates. BMC Microbiol 12(1):1–7

    Article  Google Scholar 

  33. Wang J, Li D, Qiu Y, Liu X, Huang L, Wen H, Hu J (2020) An europium functionalized carbon dot-based fluorescence test paper for visual and quantitative point-of-care testing of anthrax biomarker. Talanta 220:121377

    Article  CAS  PubMed  Google Scholar 

  34. Shah IM, Laaberki M-H, Popham DL, Dworkin J (2008) A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135(3):486–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang J, de Kool RM, Velders AH (2015) Lanthanide-dipicolinic acid coordination driven micelles with enhanced stability and tunable function. Langmuir 31(44):12251–12259

    Article  CAS  PubMed  Google Scholar 

  36. Singhal P, Vats BG, Jha SK, Neogy S (2017) Green, water-dispersible photoluminescent on–off–on probe for selective detection of fluoride ions. ACS Appl Mater Interfaces 9(24):20536–20544

    Article  CAS  PubMed  Google Scholar 

  37. Choppin GR, Peterman DR (1998) Applications of lanthanide luminescence spectroscopy to solution studies of coordination chemistry. Coord Chem Rev 174(1):283–299

    Article  CAS  Google Scholar 

  38. Song J-F, Jia Y-Y, Zhou R-S, Li S-Z, Qiu X-M, Liu J (2017) Six new coordination compounds based on rigid 5-(3-carboxy-phenyl)-pyridine-2-carboxylic acid: synthesis, structural variations and properties. RSC Adv 7(12):7217–7226

    Article  CAS  Google Scholar 

  39. Magde D, Rojas GE, Seybold PG (1999) Solvent dependence of the fluorescence lifetimes of xanthene dyes. Photochem Photobiol 70(5):737–744

    Article  CAS  Google Scholar 

  40. Zhou Q, Lin Y, Xu M, Gao Z, Yang H, Tang D (2016) Facile synthesis of enhanced fluorescent gold–silver bimetallic nanocluster and its application for highly sensitive detection of inorganic pyrophosphatase activity. Anal Chem 88(17):8886–8892

    Article  CAS  PubMed  Google Scholar 

  41. Yu Y, Yang Y, Ding J, Meng S, Li C, Yin X (2018) Design of a biocompatible and ratiometric fluorescent probe for the capture, detection, release, and reculture of rare number CTCs. Anal Chem 90(22):13290–13298

    Article  CAS  PubMed  Google Scholar 

  42. Jia J, Zhang Y, Zheng M, Shan C, Yan H, Wu W, Gao X, Cheng B, Liu W, Tang Y (2018) Functionalized Eu (III)-based nanoscale metal–organic framework to achieve near-IR-triggered and-targeted two-photon absorption photodynamic therapy. Inorg Chem 57(1):300–310

    Article  CAS  PubMed  Google Scholar 

  43. Shi K, Yang Z, Dong L, Yu B (2018) Dual channel detection for anthrax biomarker dipicolinic acid: the combination of an emission turn on probe and luminescent metal-organic frameworks. Sensors Actuators B Chem 266:263–269

    Article  CAS  Google Scholar 

  44. Wang Q-X, Xue S-F, Chen Z-H, Ma S-H, Zhang S, Shi G, Zhang M (2017) Dual lanthanide-doped complexes: the development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor. Biosens Bioelectron 94:388–393

    Article  CAS  PubMed  Google Scholar 

  45. Verma M, Kaur N, Singh N (2018) Naphthalimide-based DNA-coupled hybrid assembly for sensing Dipicolinic acid: a biomarker for Bacillus anthracis spores. Langmuir 34(22):6591–6600

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors received support of this work from the Hunan Provincial Science and Technology Plan Project, China (No. 2019TP1001) and Innovation-Driven Project of Central South University (2020CX002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghui Yang or Avraham Rasooly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Luo, J., Jiang, X. et al. Gold nanocluster-europium(III) ratiometric fluorescence assay for dipicolinic acid. Microchim Acta 188, 26 (2021). https://doi.org/10.1007/s00604-020-04667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04667-z

Keywords

Navigation