Skip to main content
Log in

Preparation of electrospun polyacrylonitrile/Ni-MOF-74 nanofibers for extraction of atenolol and captopril prior to HPLC-DAD

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Electrospun nanofibers of polyacrylonitrile/Ni-metal-organic framework 74 (PAN/Ni-MOF-74) were prepared and utilized as a novel sorbent for spin-column micro-solid-phase extraction (SC-μSPE) of atenolol (ATN) and captopril (CAP). The electrospun nanofibers were characterized by field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. Ni-MOF-74 nanoparticles in the polymeric network of polyacrylonitrile considerably enhance the extraction efficiency of the electrospun sorbent due to providing hydrophobic, hydrogen bonding, and π-π interactions with the target analytes. The entire procedure, including sample loading, washing, and eluting of the target analytes was performed by centrifugation of the spin column. The extracted analytes were then quantified by high-performance liquid chromatography with a diode array detector. Various parameters affecting extraction efficiency were optimized using the one-variable-at-a-time method. Under optimum conditions, the calibration plots were linear in the range 0.5–500 ng mL−1 for ATN and 0.3–500 ng mL−1 for CAP with r2 > 0.999. Limits of detection of 0.15 and 0.13 ng mL−1 were obtained for ATN and CAP, respectively. The intra-assay relative standard deviation for five replicate measurements was ≤ 7.8. The relative recoveries for both drugs were within the range 82.6–98.9%. The applicability of the method was successfully investigated for measuring the target drugs in biological fluids and wastewater. The results indicate proper accuracy and analytical performance of the proposed method.

Schematic presentation of electrospun nanofibers of polyacrylonitrile/Ni-metal-organic framework 74 (PAN/Ni-MOF-74) which are used as the sorbent for spin-column microextraction (SC-μSPE) of atenolol (ATN) and captopril (CAP) prior to HPLC-DAD analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moraes JT, Eisele APP, Salamanca-Neto CAR, Scremin J, Sartori ER (2016) Simultaneous voltammetric determination of antihypertensive drugs amlodipine and atenolol in pharmaceuticals using a cathodically pretreated boron-doped diamond electrode. J Braz Chem Soc 17:1264–1272 10.5935/0103-5053.20160023

    Google Scholar 

  2. Jouyban A, Sorouraddin MH, Farajzadeh MA, Somi MH, Fazeli-Bakhtiyar R (2014) Determination of five antiarrhythmic drugs in human plasma by dispersive liquid–liquid microextraction and high-performance liquid chromatography. Talanta 134:681–689. https://doi.org/10.1016/j.talanta.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  3. Argekar AP, Powar SG (2000) Simultaneous determination of atenolol and amlodipine in tablets by high-performance thin-layer chromatography. J pharm biomed anal 21:1137–1142. https://doi.org/10.1016/S0731-7085(99)00210-1

    Article  CAS  PubMed  Google Scholar 

  4. Huang T, He Z, Yang B, Shao L, Zheng X, Duan G (2006) Simultaneous determination of captopril and hydrochlorothiazide in human plasma by reverse-phase HPLC from linear gradient elution. J Pharm Biomed Anal 41:644–648. https://doi.org/10.1016/j.jpba.2005.12.007

    Article  CAS  PubMed  Google Scholar 

  5. Amedole L, Molaioni F, Botre F (2000) Detection of beta-blockers in human urine by GC-MS-MS-EI: perspectives for the antidoping control. J Pharm Biomed Anal 23:211–221. https://doi.org/10.1016/S0731-7085(00)00271-5

    Article  Google Scholar 

  6. Melnikov ES, Belova MV, Ramenskaya GV (2014) Detection of acute overdose states by some antihypertensive drugs using gas chromatography-mass spectrometry. J Anal Chem 69:1337–1343. https://doi.org/10.1134/S1061934814140068

    Article  CAS  Google Scholar 

  7. Ferraro MC, Castellano PM, Kaufman TS (2003) Chemometrics–assisted simultaneous determination of atenolol and chlorthalidone in synthetic binary mixtures and pharmaceutical dosage forms. Anal Bioanal Chem 377:1159–1164. https://doi.org/10.1007/s00216-003-2185-6

    Article  CAS  PubMed  Google Scholar 

  8. Gutiérrez-Serpa AI, Jiménez-Abizanda A, Jiménez-Moreno F, Pasán J, Pino V (2020) Core-shell microparticles formed by the metal-organic framework CIM-80(Al) (Silica@CIM-80(Al)) as sorbent material in miniaturized dispersive solid-phase extraction. Talanta 211. https://doi.org/10.1016/j.talanta.2020.120723

  9. Baktash MY, Bagheri H (2017) A superhydrophobic silica aerogel with high surface area for needle trap microextraction of chlorobenzenes. Microchim Acta 184:2151–2156. https://doi.org/10.1007/s00604-017-2212-5

    Article  CAS  Google Scholar 

  10. Bagheri H, Manshaei F, Rezvani O (2018) Three-dimensional nanofiber scaffolds are superior to two-dimensional mats in micro-oriented extraction of chlorobenzenes. Microchim Acta 185:322. https://doi.org/10.1007/s00604-018-2858-7

    Article  CAS  Google Scholar 

  11. Theodoridis G, Papadoyannis IN (2001) Modern sample preparation methods in chemical analysis. Microchim Acta 136:199–204. https://doi.org/10.1007/s006040170054

    Article  CAS  Google Scholar 

  12. Fresco-Cala B, Mompó-Roselló Ó, Simó-Alfonso E, Cárdenas S, Herrero-Martínez JM (2018) Carbon nanotube-modified monolithic polymethacrylate pipette tips for (micro)solid-phase extraction of antidepressants from urine samples. Microchim Acta 185:127. https://doi.org/10.1007/s00604-017-2659-4

    Article  CAS  Google Scholar 

  13. Stamna A, Anthemidis NA (2020) Sequential injection solvent dispersive micro solid phase extraction (SI-SD-μSPE) platform coupled with atomic absorption spectrometry for lead determination in water samples. Microchem J 156. https://doi.org/10.1016/j.microc.2020.104820

  14. Seidi S, Tajik M, Baharfar M, Rezazadeh M (2019) Micro solid-phase extraction (pipette tip and spin column) and thin film solid-phase microextraction: miniaturized concepts for chromatographic analysis. Trends Analyt Chem 118:810–827. https://doi.org/10.1016/j.trac.2019.06.036

    Article  CAS  Google Scholar 

  15. Esrafili A, Ghambarian M, Tajik M, Baharfar M (2020) Spin-column micro-solid phase extraction of chlorophenols using MFU-4l metal-organic framework. Microchim Acta 183. https://doi.org/10.1007/s00604-019-4023-3

  16. Seidi S, Sadat Karimi E, Rouhollahi A, Baharfar M, Shanehsaz M, Tajik M (2019) Synthesis and characterization of polyamide-graphene oxide-polypyrrole electrospun nanofibers for spin-column micro solid phase extraction of parabens in milk samples. J Chromatogr A 1599:25–34. https://doi.org/10.1016/j.chroma.2019.04.014

    Article  CAS  PubMed  Google Scholar 

  17. Gómez-Hens A, Fernández-Romero JM, Aguilar-Caballos MP (2008) Nanostructures as analytical tools in bioassays. Trends Anal Chem 27:394–406. https://doi.org/10.1016/j.trac.2008.03.006

    Article  CAS  Google Scholar 

  18. Chen S, Yan J, Li J, Zhang Y, Lu D (2017) Solid phase extraction with titanium dioxide nanofibers combined with dispersive liquid-liquid microextraction for speciation of thallium prior to electrothermal vaporization ICP-MS. Microchim Acta 184:2797–2803. https://doi.org/10.1007/s00604-017-2309-x

    Article  CAS  Google Scholar 

  19. Mehrani Z, Ebrahimzadeh H, Aliakbar AR, Asgharinezhad AA (2018) A poly(4-nitroaniline)/poly (vinyl alcohol) electrospun nanofiber as an efficient nanosorbent for solid phase microextraction of diazinon and chlorpyrifos from water and juice samples. Microchim Acta 185:384. https://doi.org/10.1007/s00604-018-2911-6

    Article  CAS  Google Scholar 

  20. Seidi S, Doroudian M (2020) Electrospun NiFe layered double hydroxide/Nylon 6 composite nanofibers as a sorbent for micro solid phase extraction by packed sorbent of non-steroidal anti-inflammatory drugs in human blood. J Chromatogr A 1614. https://doi.org/10.1016/j.chroma.2019.460718

  21. Mohammadi V, Saraji M, Jafari MT (2019) Direct molecular imprinting technique to synthesize coated electrospun nanofibers for selective solid-phase microextraction of chlorpyrifos. Microchim Acta 186:524. https://doi.org/10.1007/s00604-019-3641-0

    Article  CAS  Google Scholar 

  22. Mehrani Z, Ebrahimzadeh H, Moradi E, Yamini Y (2020) Using three-dimensional poly (vinyl alcohol)/sodium hexametaphosphate nanofiber as a non-toxic and efficient nanosorbent for extraction and recovery of lanthanide ions from aqueous solutions. J Mol Liq 307. https://doi.org/10.1016/j.molliq.2020.112925

  23. Asiabi M, Mehdinia A, Jabbari A (2017) Spider-web-like chitosan/MIL-68(Al) composite nanofibers for high-efficient solid phase extraction of Pb (II) and Cd (II). Microchim Acta 184:4495–4501. https://doi.org/10.1007/s00604-017-2473-z

    Article  CAS  Google Scholar 

  24. Du F, Sun L, Huang Z, Chen Z, Xu Z, Ruan G, Zhao C (2020) Electrospun reduced graphene oxide/TiO2/poly (acrylonitrile-co-maleic acid) composite nanofibers for efficient adsorption and photocatalytic removal of malachite green and leucomalachite green. Chemosphere 239:1. https://doi.org/10.1016/j.chemosphere.2019.124764

    Article  CAS  Google Scholar 

  25. Bagheri H, Karim F, Javanmardi H, Abbasi A, Golzari T (2018) Nanostructured molybdenum oxide in a 3D metal organic framework and in a 2D polyoxometalate network for extraction of chlorinated benzenes prior to their quantification by GC–MS. Microchim Acta 185:536. https://doi.org/10.1007/s00604-018-3070-5

    Article  CAS  Google Scholar 

  26. Xie L, Shuqin Liu Z, Han R, Jiang H, Liu F, Zhu F, Zeng C, Ouyang G (2015) Preparation and characterization of metal–organic framework MIL-101(Cr)-coated solid-phase microextraction fiber. Anal Chim Acta 853:303–310. https://doi.org/10.1016/j.aca.2014.09.048

    Article  CAS  PubMed  Google Scholar 

  27. Arabsorkhi B, Sereshti H, Abbasi A (2019) Electrospun metal-organic framework/polyacrylonitrile composite nanofibrous mat as a microsorbent for the extraction of tetracycline residue in human blood plasma. J Sep Sci 42:1500–1508. https://doi.org/10.1002/jssc.201801305

    Article  CAS  PubMed  Google Scholar 

  28. Jalilian N, Ebrahimzadeh H, Asgharinezhad AA (2018) Determination of acidic, basic and amphoteric drugs in biological fluids and wastewater after their simultaneous dispersive microsolid phase extraction using multiwall carbon nanotubes/magnetite nanoparticles @poly (2-aminopyrimidine) composite. Microchem J 143:337–349. https://doi.org/10.1016/j.microc.2018.08.037

    Article  CAS  Google Scholar 

  29. Tavengwa N, Nyamukamba P, Cukrowska E, Chimuka L (2016) Miniaturized pipette-tip-based electrospun polyacrylonitrile nanofibers for the micro-solid-phase extraction of nitro-based explosive compounds. J Sep Sci 39:4819–4827. https://doi.org/10.1002/jssc.201600730

    Article  CAS  PubMed  Google Scholar 

  30. Adhikari AK, Lin K (2016) Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74(Ni, Co) by doping palladium-containing activated carbon. Chemical Engineering Journal 248:1348–1360. https://doi.org/10.1016/j.cej.2015.09.086

    Article  CAS  Google Scholar 

  31. Yan Z, Wu M, Hu B, Yao M, Zhang L, Lu Q, Pang J (2018) Electrospun UiO-66/polyacrylonitrile nanofibers as efficient sorbent for pipette tip solid phase extraction of phytohormones in vegetable samples. J Chromatogr A 1542:19–27. https://doi.org/10.1016/j.chroma.2018.02.030

    Article  CAS  PubMed  Google Scholar 

  32. Gu Z, Yang C, Chang N, Yan X (2012) Metal–organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45:734–745. https://doi.org/10.1021/ar2002599

    Article  CAS  PubMed  Google Scholar 

  33. Choi I, Eil Jung Y, Jong Yoo S, Young Kim J, Kim H, Yeon Lee C, Jang J (2017) Facile synthesis of M-MOF-74 (M=Co, Ni, Zn) and its application as an electrocatalyst for electrochemical CO2 conversion and H2 production. J Electrochem Sci Technol 8:61–68. https://doi.org/10.5229/JECST.2017.8.1.61

    Article  CAS  Google Scholar 

  34. Xu T, Hou X, Liu S, Liu B (2018) One-step synthesis of magnetic and porous Ni@MOF-74(Ni) composite. Microporous Mesoporous Mater 259:178–183. https://doi.org/10.1016/j.micromeso.2017.10.014

    Article  CAS  Google Scholar 

  35. Jalilian N, Ebrahimzadeh H, Asgharinezhad AA (2019) Preparation of magnetite/multiwalled carbon nanotubes/metal-organic framework composite for dispersive magnetic micro solid phase extraction of parabens and phthalate esters from water samples and various types of cream for their determination with liquid chromatography. J Chromatogr A 1608:460426. https://doi.org/10.1016/j.chroma.2019.460426

    Article  CAS  PubMed  Google Scholar 

  36. Moffat AC, Osselton MD, Widdop B, Watts J (2011) Clarke’s analysis of drugs and poisons. Pharmaceutical Press, London

    Google Scholar 

  37. Arias R, Jiménez RM, Alonso RM, Télez M, Arrieta I, Flores P, Ortiz-Lastra P (2001) Determination of the b-blocker atenolol in plasma by capillary zone electrophoresis. J Chromatogr A 916:297–304. https://doi.org/10.1016/S0021-9673(01)00564-7

    Article  CAS  PubMed  Google Scholar 

  38. Zeeb M, Farahani H, Papan MK (2016) Determination of atenolol in human plasma using ionic-liquid-based ultrasound-assisted in situ solvent formation microextraction followed by high-performance liquid chromatography. J Sep Sci 39:2138–2145. https://doi.org/10.1002/jssc.201501365

    Article  CAS  PubMed  Google Scholar 

  39. Basan H, Yarımkaya S (2014) A novel solid-phase extraction–spectrofluorimetric method for the direct determination of atenolol in human urine. Luminescence 29:225–229. https://doi.org/10.1002/bio.2532

    Article  CAS  PubMed  Google Scholar 

  40. Karimi A, Alizadeh N (2009) Rapid analysis of captopril in human plasma and pharmaceutical preparations by headspace solid phase microextraction based on polypyrrole film coupled to ion mobility spectrometry. Talanta 79:479–485. https://doi.org/10.1016/j.talanta.2009.04.016

    Article  CAS  PubMed  Google Scholar 

  41. Hashemi F, Rastegarzadeh S, Pourreza N (2018) Response surface methodology optimized dispersive liquid-liquid microextraction coupled with surface plasmon resonance of silver nanoparticles as colorimetric probe for determination of captopril. Sens Actuators B: Chem 256:251–260. https://doi.org/10.1016/j.snb.2017.09.178

    Article  CAS  Google Scholar 

  42. Yilmaz B, Arslan S (2011) Determination of atenolol in human urine by gas chromatography–mass spectrometry method. J Chromatogr Sci 49:365–369. https://doi.org/10.1093/chromsci/49.5.365

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homeira Ebrahimzdeh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini, S., Ebrahimzdeh, H., Seidi, S. et al. Preparation of electrospun polyacrylonitrile/Ni-MOF-74 nanofibers for extraction of atenolol and captopril prior to HPLC-DAD. Microchim Acta 187, 508 (2020). https://doi.org/10.1007/s00604-020-04483-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04483-5

Keywords

Navigation