Skip to main content

Advertisement

Log in

Dark field microscope-based single nanoparticle identification coupled with statistical analysis for ultrasensitive biotoxin detection in complex sample matrix

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel approach for ultrasensitive ochratoxin A (OTA) detection is reported based on dark field microscope-based single nanoparticle identification coupled with a statistical analysis method. OTA aptamers were firstly hybridized with a single-stranded DNA (DNA1) to form an identification probe (DNA1-Apt). The aptamers separate from DNA1 in the presence of OTA and are released from the identification probe. Then, another single-stranded DNA (DNA2) hybridizes with DNA1 and result in the aggregation of gold nanoparticles (AuNPs). Therefore, the presence of AuNP aggregates is the evidence of the presence of OTA, while AuNP aggregates can be easily identified together with the monomers under dark field microscopic inspection. On the other hand, by counting the aggregation rate (the number of AuNP aggregates versus the number of AuNP monomers) with a statistical analysis method, OTA could be quantitatively detected. The detection range for OTA was 0.1 pg/mL ~ 30 ng/mL and the limit of detection was 0.1 pg/mL. The proposed sensor has comparative detection performance to sensors utilizing a number of signal amplification procedures, with the additional advantages of simplicity and high efficiency. The sensor can also be adopted for other target detection simply by replacing the identification probes.

The schematic of the AuNP aggregation for OTA detection. The OTA aptamers were competitively banded by OTA and induced form AuNP aggregation after adding DNA2 and AuNPs2. Subsequently, AuNPs were detected under dark field microscope and statistical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang Z, Yu L, Xu L, Hu X, Li P, Zhang Q, Ding X, Feng X (2014) Biotoxin sensing in food and environment via microchip. Electrophoresis 35(11):1547–1559. https://doi.org/10.1002/elps.201300570

    Article  CAS  PubMed  Google Scholar 

  2. Covarelli L, Beccari G, Marini A, Tosi L (2012) A review on the occurrence and control of ochratoxigenic fungal species and ochratoxin A in dehydrated grapes, non-fortified dessert wines and dried vine fruit in the Mediterranean area. Food Control 26(2):347–356. https://doi.org/10.1016/j.foodcont.2012.01.044

    Article  CAS  Google Scholar 

  3. Chauhan R, Singh J, Sachdev T, Basu T, Malhotra BD (2016) Recent advances in mycotoxins detection. Biosens Bioelectron 81:532–545. https://doi.org/10.1016/j.bios.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  4. Luhe A, Hildebrand H, Bach U, Dingermann T, Ahr HJ (2003) A new approach to studying ochratoxin A (OTA)-induced nephrotoxicity: expression profiling in vivo and in vitro employing cDNA microarrays. Toxicol Sci 73(2):315–328

    Article  Google Scholar 

  5. Rivas L, Mayorga-Martinez CC, Quesada-González D, Zamora-Gálvez A, de la Escosura-Muñiz A, Merkoçi A (2015) Label-free impedimetric aptasensor for ochratoxin-A detection using iridium oxide nanoparticles. Anal Chem 87(10):5167–5172. https://doi.org/10.1021/acs.analchem.5b00890

    Article  CAS  PubMed  Google Scholar 

  6. Gilbert J, Anklam E (2002) Validation of analytical methods for determining mycotoxins in foodstuffs. TrAC, Trends Anal Chem 21(6–7):468–486

    Article  CAS  Google Scholar 

  7. Cigic IK, Strlic M, Schreiber A, Kocjancic M, Pihlar B (2006) Ochratoxin A in wine: its determination and photostability. Anal Lett 39(7):1475–1488

    Article  CAS  Google Scholar 

  8. Blasco C, Torres CM, Pico Y (2007) Progress in a antibacterials analysis of residual in food. TrAC, Trends Anal Chem 26(9):895–913

    Article  CAS  Google Scholar 

  9. Fadock KL, Manderville RA (2017) DNA aptamer–target binding motif revealed using a fluorescent guanine probe: implications for food toxin detection. ACS Omega 2(8):4955–4963. https://doi.org/10.1021/acsomega.7b00782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen J, Zhang X, Cai S, Wu D, Chen M, Wang S, Zhang J (2014) A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection. Biosens Bioelectron 57:226–231. https://doi.org/10.1016/j.bios.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Chen J, Zhang X, Zeng Z, Chen M, Wang S (2012) An electrochemical biosensor based on hairpin-DNA aptamer probe and restriction endonuclease for ochratoxin A detection. Electrochem Commun 25:5–7. https://doi.org/10.1016/j.elecom.2012.09.006

    Article  CAS  Google Scholar 

  12. Krska R, Welzig E, Berthiller F, Molinelli A, Mizaikoff B (2005) Advances in the analysis of mycotoxins and its quality assurance. Food Addit Contam 22(4):345–353

    Article  CAS  Google Scholar 

  13. Yu FY, Chi TF, Liu BH, Su CC (2005) Development of a sensitive enzyme-linked immunosorbent assay for the determination of ochratoxin A. J Agric Food Chem 53(17):6947–6953

    Article  CAS  Google Scholar 

  14. Phanchai W, Srikulwong U, Chompoosor A, Sakonsinsiri C, Puangmali T (2018) Insight into the molecular mechanisms of AuNP-based aptasensor for colorimetric detection: a molecular dynamics approach. Langmuir 34(21):6161–6169. https://doi.org/10.1021/acs.langmuir.8b00701

    Article  CAS  PubMed  Google Scholar 

  15. Bunka DHJ, Stockley PG (2006) Aptamers come of age – at last. Nat Rev Microbiol 4:588–596. https://doi.org/10.1038/nrmicro1458

    Article  CAS  PubMed  Google Scholar 

  16. Yang L, Zhang Y, Li R, Lin C, Guo L, Qiu B, Lin Z, Chen G (2015) Electrochemiluminescence biosensor for ultrasensitive determination of ochratoxin A in corn samples based on aptamer and hyperbranched rolling circle amplification. Biosens Bioelectron 70:268–274. https://doi.org/10.1016/j.bios.2015.03.067

    Article  CAS  PubMed  Google Scholar 

  17. Zhao W, Ali MM, Brook MA, Li Y (2008) Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Angew Chem Int Ed 47(34):6330–6337. https://doi.org/10.1002/anie.200705982

    Article  CAS  Google Scholar 

  18. Huang L, Wu J, Zheng L, Qian H, Xue F, Wu Y, Pan D, Adeloju SB, Chen W (2013) Rolling chain amplification based signal-enhanced electrochemical Aptasensor for ultrasensitive detection of ochratoxin A. Anal Chem 85(22):10842–10849. https://doi.org/10.1021/ac402228n

    Article  CAS  PubMed  Google Scholar 

  19. Tong P, Zhao W-W, Zhang L, Xu J-J, Chen H-Y (2012) Double-probe signal enhancing strategy for toxin aptasensing based on rolling circle amplification. Biosens Bioelectron 33(1):146–151. https://doi.org/10.1016/j.bios.2011.12.042

    Article  CAS  PubMed  Google Scholar 

  20. Jin G, Wang C, Yang L, Li X, Guo L, Qiu B, Lin Z, Chen G (2015) Hyperbranched rolling circle amplification based electrochemiluminescence aptasensor for ultrasensitive detection of thrombin. Biosens Bioelectron 63:166–171. https://doi.org/10.1016/j.bios.2014.07.033

    Article  CAS  PubMed  Google Scholar 

  21. Yang L, Tao Y, Yue G, Li R, Qiu B, Guo L, Lin Z, Yang H-H (2016) Highly selective and sensitive electrochemiluminescence biosensor for p53 DNA sequence based on nicking endonuclease assisted target recycling and hyperbranched rolling circle amplification. Anal Chem 88(10):5097–5103. https://doi.org/10.1021/acs.analchem.5b04521

    Article  CAS  PubMed  Google Scholar 

  22. Palmer S, Wiegand AP, Maldarelli F, Bazmi H, Mican JM, Polis M, Dewar RL, Planta A, Liu S, Metcalf JA, Mellors JW, Coffin JM (2003) New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 41(10):4531–4536. https://doi.org/10.1128/jcm.41.10.4531-4536.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duan R, Zuo X, Wang S, Quan X, Chen D, Chen Z, Jiang L, Fan C, Xia F (2013) Lab in a tube: ultrasensitive detection of microRNAs at the single-cell level and in breast Cancer patients using quadratic isothermal amplification. J Am Chem Soc 135(12):4604–4607. https://doi.org/10.1021/ja311313b

    Article  CAS  PubMed  Google Scholar 

  24. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586. https://doi.org/10.1021/ar7002804

    Article  CAS  PubMed  Google Scholar 

  25. Li T, Wu X, Liu F, Li N (2017) Analytical methods based on the light-scattering of plasmonic nanoparticles at the single particle level with dark-field microscopy imaging. Analyst 142(2):248–256. https://doi.org/10.1039/c6an02384c

    Article  CAS  PubMed  Google Scholar 

  26. Li J, Xi H, Kong C, Liu Q, Chen Z (2018) “Aggregation-to-deaggregation” colorimetric signal amplification strategy for Ag+ detection at the femtomolar level with dark-field microscope observation. Anal Chem 90(19):11723–11727. https://doi.org/10.1021/acs.analchem.8b03739

    Article  CAS  PubMed  Google Scholar 

  27. Guo LH, Ferhan AR, Chen HL, Li CM, Chen GN, Hong S, Kim DH (2013) Distance-mediated plasmonic dimers for reusable colorimetric switches: a measurable peak shift of more than 60 nm. Small 9(2):234–240. https://doi.org/10.1002/smll.201201061

    Article  CAS  PubMed  Google Scholar 

  28. Guo L, Chen L, Hong S, Kim D-H (2016) Single plasmonic nanoparticles for ultrasensitive DNA sensing: from invisible to visible. Biosens Bioelectron 79:266–272. https://doi.org/10.1016/j.bios.2015.12.027

    Article  CAS  PubMed  Google Scholar 

  29. Zhou W, Li Q, Liu H, Yang J, Liu D (2017) Building electromagnetic hot spots in living cells via target-triggered nanoparticle dimerization. ACS Nano 11(4):3532–3541. https://doi.org/10.1021/acsnano.7b00531

    Article  CAS  PubMed  Google Scholar 

  30. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22. https://doi.org/10.1038/physci241020a0

    Article  CAS  Google Scholar 

  31. Guo L, Zhou X, Kim D-H (2011) Facile fabrication of distance-tunable Au-nanorod chips for single-nanoparticle plasmonic biosensors. Biosens Bioelectron 26(5):2246–2251. https://doi.org/10.1016/j.bios.2010.09.042

    Article  CAS  PubMed  Google Scholar 

  32. Giovannoli C, Passini C, Di Nardo F, Anfossi L, Baggiani C (2014) Determination of ochratoxin A in Italian red wines by molecularly imprinted solid phase extraction and HPLC analysis. J Agric Food Chem 62(22):5220–5225. https://doi.org/10.1021/jf5010995

    Article  CAS  PubMed  Google Scholar 

  33. Wang S, Zhang Y, Pang G, Zhang Y, Guo S (2017) Tuning the aggregation/disaggregation behavior of Graphene quantum dots by structure-switching aptamer for high-sensitivity fluorescent ochratoxin A sensor. Anal Chem 89(3):1704–1709. https://doi.org/10.1021/acs.analchem.6b03913

    Article  CAS  PubMed  Google Scholar 

  34. Haes AJ, Duyne RPV (2004) Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics. Expert Rev Mol Diagn 4(4):527–537. https://doi.org/10.1586/14737159.4.4.527

    Article  CAS  PubMed  Google Scholar 

  35. Cutler JI, Auyeung E, Mirkin CA (2012) Spherical nucleic acids. J Am Chem Soc 134(3):1376–1391. https://doi.org/10.1021/ja209351u

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21675028), the key Research and Development Program of Zhejiang Province (2020C02022), Thirteenth Five-Year Plan” Marine Economy Innovation and Development Demonstration Project (Grant No. FZHJ19), Nature Sciences Funding of Fujian Province (2018 J01682, 2019 J01238), STS Key Project of Fujian Province (2017 T3007), the Cooperative Project of Production and Study in University of Fujian Province (2018Y4007), and the Program for New Century Excellent Talents in Fujian Province University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Longhua Guo, Lifen Chen or Bin Qiu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1890 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Guo, L., Chen, L. et al. Dark field microscope-based single nanoparticle identification coupled with statistical analysis for ultrasensitive biotoxin detection in complex sample matrix. Microchim Acta 187, 413 (2020). https://doi.org/10.1007/s00604-020-04386-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04386-5

Keywords

Navigation