Skip to main content
Log in

Fluorometric sensing of oxygen using manganese(II)-doped zinc sulfide nanocrystals

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Manganese(II)-doped zinc sulfide nanocrystals (Mn:ZnS NCs) with dual-emission fluorescence (peaks at 445 nm and 590 nm under 330 nm excitation), good water stability and low toxicity were synthesized by hot injection. The fluorescence intensity of both emission bands of the nanocrystals can change rapidly by the content of gaseous and dissolved oxygen. The process is fully reversible. Compared with the maximum intensity of Mn:ZnS sensing film in 100% nitrogen, the emission of the blue emission decreases by 72% in the presence of 100% oxygen, and the yellow emission by 32%. Response is linear in the presence of 3% to 12% of oxygen percentage in gas. For water-dissolved oxygen, the linear response occurs between 0.54 and 11.4 mg·L−1.

Mn-doped ZnS NCs with dual-emission fluorescence were synthesized by hot-injection method. The reversible and rapid sensing characteristics of Mn-doped ZnS NCs to oxygen were studied, and the possible sensing mechanism was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jang Y, Shapiro A, Isarov M, Rubin-Brusilovski A, Safran A, Budniak AK, Horani F, Dehnel J, Sashchiuk A, Lifshitz E (2017) Interface control of electronic and optical properties in IV-VI and II-VI core/shell colloidal quantum dots: a review. Chem Commun 53:1002–1024

    Article  CAS  Google Scholar 

  2. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  Google Scholar 

  3. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  Google Scholar 

  4. Freeman R, Willner I (2012) Optical molecular sensing with semiconductor quantum dots (QDs). Chem Soc Rev 41:4067–4085

    Article  CAS  Google Scholar 

  5. Wu P, Zhao T, Wang S, Hou X (2014) Semicondutor quantum dots-based metal ion probes. Nanoscale 6:43–64

    Article  CAS  Google Scholar 

  6. Pradhan N, Adhikari SD, Nag A, Sarma DD (2017) Luminescence, plasmonic, and magnetic properties of doped semiconductor nanocrystals. Angew Chem Int Ed 56:2–19

    Article  Google Scholar 

  7. Labiadh H, Sellami B, Khazri A, Saidani W, Khemais S (2017) Optical properties and toxicity of undoped and Mn-doped ZnS semiconductor nanoparticles synthesized through the aqueous route. Opt Mater 64:179–186

    Article  CAS  Google Scholar 

  8. Wu P, Yan XP (2013) Doped quantum dots for chemo/biosensing and bioimaging. Chem Soc Rev 42:5489–5521

    Article  CAS  Google Scholar 

  9. Lu X, Zhang J, Xie YN, Zhang X, Jiang X, Hou X, Wu P (2018) Ratiometric phosphorescent probe for thallium in serum, water, and soil samples cased on long-lived, spectrally resolved, Mn-doped ZnSe quantum dots and carbon dots. Anal Chem 90:2939–2945

    Article  CAS  Google Scholar 

  10. Wang J, Yu J, Wang X, Wang L, Li B, Shen D, Kang Q, Chen L (2018) Functional ZnS:Mn(II) quantum dot modified with L-cysteine and 6-mercaptonicotinic acid as a fluorometric probe for copper(II). Microchim Acta 185:420

    Article  Google Scholar 

  11. Gong Y, Fan Z (2014) Melamine-modulated mercaptopropionic acid-capped manganese doped zinc sulfide quantum dots as a room-temperature phosphorescence sensor for detecting clenbuterol in biological fluids. Sens Actuators B Chem 202:638–644

    Article  CAS  Google Scholar 

  12. Zhang K, Yu T, Liu F, Sun M, Yu H, Liu B, Zhang Z, Jiang H, Wang S (2014) Selective fluorescence turn-on and ratiometric detection of organophosphate using dual-emitting Mn-doped ZnS nanocrystal probe. Anal Chem 86:11727–11733

    Article  CAS  Google Scholar 

  13. Zhang J, Tang D, Yao Y, Hou X, Wu P (2018) Aggregation-induced phosphorescence enhancement of Mn-doped ZnS quantum dots: the role of dot-to-dot distance. Nanoscale 10:9236–9244

    Article  CAS  Google Scholar 

  14. Tan L, Chen K, Huang C, Peng R, Luo X, Yang R, Cheng Y, Tang Y (2015) A fluorescent turn-on detection scheme for α-fetoprotein using quantum dots placed in a boronate-modified molecularly imprinted polymer with high affinity for glycoproteins. Microchim Acta 182:2615–2622

    Article  CAS  Google Scholar 

  15. Wolfbeis OS (2015) Luminescent sensing and imaging of oxygen: fierce competition to the Clark electrode. Bioessays 37:921–928

    Article  CAS  Google Scholar 

  16. Lu S, Xu W, Zhang J, Chen Y, Xie L, Yao Q, Jiang Y, Wang Y, Chen X (2016) Facile synthesis of a ratiometric oxygen nanosensor for cellular imaging. Biosens Bioelectron 86:176–184

    Article  CAS  Google Scholar 

  17. Wang X-d, Wolfbeis OS (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43:3666–3761

    Article  CAS  Google Scholar 

  18. Lau PC, Norwood RA, Mansuripur M, Peyghambarian N (2013) An effective and simple oxygen nanosensor made from MPA-capped water soluble CdTe nanocrystals. Nanotechnology 24:015501

    Article  Google Scholar 

  19. Lorenzon M, Pinchetti V, Bruni F, Bae WK, Meinardi F, Klimov VI, Brovelli S (2017) Single-particle ratiometric pressure sensing based on "double-sensor" colloidal nanocrystals. Nano Lett 17:1071–1081

    Article  CAS  Google Scholar 

  20. Lorenzon M, Sortino L, Akkerman Q, Accornero S, Pedrini J, Prato M, Pinchetti V, Meinardi F, Manna L, Brovelli S (2017) Role of nonradiative defects and environmental oxygen on exciton recombination processes in CsPbBr3 perovskite nanocrystals. Nano Lett 17:3844–3853

    Article  CAS  Google Scholar 

  21. Wang X-d, Chen X, Xie Z-x, Wang X-r (2008) Reversible optical sensor strip for oxygen. Angew Chem Int Ed 47:7450–7453

    Article  CAS  Google Scholar 

  22. Lemon CM, Karnas E, Han X, Bruns OT, Kempa TJ, Fukumura D, Bawendi MG, Jain RK, Duda DG, Nocera DG (2015) Micelle-encapsulated quantum dot-porphyrin assemblies as in vivo two-photon oxygen sensors. J Am Chem Soc 137:9832–9842

    Article  CAS  Google Scholar 

  23. Quan Z, Yang D, Li C, Kong D, Yang P, Cheng Z, Lin J (2009) Multicolor tuning of manganese-doped ZnS colloidal nanocrystals. Langmuir 25:10259–10262

    Article  CAS  Google Scholar 

  24. Zhang W, Chen G, Wang J, Ye BC, Zhong X (2009) Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots. Inorg Chem 48:9723–9731

    Article  CAS  Google Scholar 

  25. McClean ICT, C. B. (1992) Photoluminescence study of MBE-grown films on ZnS. Semicond Sci Technol 7:1394–1399

    Article  CAS  Google Scholar 

  26. Ge J-P, Wang J, Zhang H-X, Wang X, Peng Q, Li Y-D (2005) Halide-transport chemical vapor deposition of luminescent ZnS:Mn2+ one-dimensional nanostructures. Adv Funct Mater 15:303–308

    Article  CAS  Google Scholar 

  27. Suyver JF, Wuister SF, Kelly JJ, Meijerink A (2001) Synthesis and photoluminescence of nanocrystalline ZnS:Mn2+. Nano Lett 1:429–433

    Article  CAS  Google Scholar 

  28. Zhang H, Zhang S, Zuo M, Li G, Hou J (2005) Synthesis of ZnS nanowires and assemblies by carbothermal chemical vapor deposition and their photoluminescence. Eur J Inorg Chem 2005:47–50

    Article  Google Scholar 

  29. Srivastava BB, Jana S, Karan NS, Paria S, Jana NR, Sarma DD, Pradhan N (2010) Highly luminescent Mn-doped ZnS nanocrystals:gram-scale synthesis. J Phys Chem Lett 1:1454–1458

    Article  CAS  Google Scholar 

  30. Pradhan N (2016) Red-tuned Mn d-d emission in doped semiconductor nanocrystals. Chemphyschem 17:1087–1094

    Article  CAS  Google Scholar 

  31. Zhuang J, Zhang X, Wang G, Li D, Yang W, Li T (2003) Synthesis of water-soluble ZnS:Mn2+ nanocrystals by using mercaptopropionic acid as stabilizer. J Mater Chem 13:1853–1857

    Article  CAS  Google Scholar 

  32. He Y, Wang H-F, Yan X-P (2008) Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological fluids. Anal Chem 80:3832–3837

    Article  CAS  Google Scholar 

  33. Pradhan N, Peng X (2007) Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry. J Am Chem Soc 129:3339–3347

    Article  CAS  Google Scholar 

  34. Blackman B, Battaglia D, Peng X (2008) Bright and water-soluble near IR-emitting CdSe/CdTe/ZnS type-II/type-I nanocrystals, tuning the efficiency and stability by growth. Chem Mater 20:4847–4853

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21876141, 21675133), the Shenzhen Science and Technology Project (No. JCYJ20180306172823786) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 21521004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 4774 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, F., Lai, Z., Zhang, L. et al. Fluorometric sensing of oxygen using manganese(II)-doped zinc sulfide nanocrystals. Microchim Acta 187, 66 (2020). https://doi.org/10.1007/s00604-019-4056-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4056-7

Keywords

Navigation