Skip to main content

Advertisement

Log in

A fluorometric aptamer-based assay for ochratoxin A by using exonuclease III-assisted recycling amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fluorometric assay is described for ochratoxin A (OTA) using an aptamer. The method is based on exonuclease-assisted recycling amplification. The OTA-binding aptamer partially hybridizes with complementary DNA (cDNA) that is released when the aptamer recognizes OTA. Then, cDNA hybridizes with a specifically designed hairpin DNA. Next, short ssDNA and cDNA are, respectively, released by exonuclease III catalyzed hydrolysis of the dsDNA. The cDNA induces the next ring opening and digestion. The short ssDNA captures the sDNA that is labeled with fluorescent FAM and is absorbed on graphene oxide (GO). The green fluorescence of the sDNA/GO system is quenched but is recovered if the sDNA is released from GO. This assay is high sensitive, works in the 5 nM to 200 nM OTA concentration range and has a 0.96 nM lower detection limit. It was applied to the quantitation of OTA in spiked wine and coffee samples.

Schematic of a fluorometric assay based on exonuclease-assisted recycling amplification for quantitative monitoring of OTA without the need of sample separation and multiple washing steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Petzinger E, Ziegler K (2000) Ochratoxin A from a toxicological perspective. J Vet Pharmacol Ther 23:91–98. https://doi.org/10.1046/j.1365-2885.2000.00244.x

    Article  CAS  PubMed  Google Scholar 

  2. Pfohl AL, Manderville RA (2007) Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res 51:61–99. https://doi.org/10.1002/mnfr.200600137

    Article  Google Scholar 

  3. Yin J, Liu Y, Wang S (2018) Engineering a universal and label-free evaluation method for mycotoxins detection based on strand displacement amplification and G-quadruplex signal amplification. Sensor Actuat B-Chem 256:573–579. https://doi.org/10.1016/j.snb.2017.10.083

    Article  CAS  Google Scholar 

  4. Mcmahon G, Hanson L, Lee JJ (1986) Identification of an activated c-Ki-ras oncogene in rat liver tumors induced by aflatoxin B1. Proc Natl Acad Sci U S A 83:9418–9422. https://doi.org/10.1073/pnas.83.24.9418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brien EO, Dietrich DR (2005) Ochratoxin A: the continuing enigma. Crit Rev Toxicol 35:33–60. https://doi.org/10.1080/10408440590905948

    Article  CAS  Google Scholar 

  6. Horvath A, Upham LB, Ganev V (2002) Determination of the epigenetic effects of ochratoxin in a human kidney and a rat liver epithelial cell line. Toxicon 40:273–282. https://doi.org/10.1016/S0041-0101(01)00219-7

    Article  CAS  PubMed  Google Scholar 

  7. European Commission (2006) Commission regulation (EC) no 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union L364:5e24

    Google Scholar 

  8. Soleas GJ, Yan J, Goldberg DM (2001) Assay of ochratoxin A in wine and beer by high-pressure liquid chromatography photodiode array and gas chromatography mass selective detection. J Agric Food Chem 49:2733–2740. https://doi.org/10.1021/jf0100651

    Article  CAS  PubMed  Google Scholar 

  9. Liang Y, Huang X, Chen X (2018) Plasmonic ELISA for naked-eye detection of ochratoxin A based on the tyramine-H2O2 amplification system. Sensor Actuat B-Chem 259:162–169. https://doi.org/10.1016/j.snb.2017.12.004

    Article  CAS  Google Scholar 

  10. Qin X, Wang Q, Geng L (2019) A “signal-on” photoelectrochemical aptasensor based on graphene quantum dots-sensitized TiO2 nanotube arrays for sensitive detection of chloramphenicol. Talanta 197:28–35. https://doi.org/10.1016/j.talanta.2018.12.103

    Article  CAS  PubMed  Google Scholar 

  11. Jiang Y, Sun W-D, Pu H (2019) Ultrasensitive analysis of kanamycin residue in milk by SERS-based aptasensor. Talanta 197:151–158. https://doi.org/10.1016/j.talanta.2019.01.015

    Article  CAS  PubMed  Google Scholar 

  12. Zhou L, Ji F, Zhang T (2019) An fluorescent aptasensor for sensitive detection of tumor marker based on the FRET of a sandwich structured QDs-AFP-AuNPs. Talanta 197:444–450. https://doi.org/10.1016/j.talanta.2019.01.012

    Article  CAS  Google Scholar 

  13. Chen X, Huang Y, Duan N (2014) Selection and characterization of single stranded DNA aptamers recognizing fumonisin B-1. Microchim Acta 81:11–12. https://doi.org/10.1007/s00604-014-1260-3

    Article  CAS  Google Scholar 

  14. Yuan F, Chen H, Xu J (2014) Aptamer-based luminescence energy transfer from near-infrared-to-near-infrared upconverting nanoparticles to gold nanorods and its application for the detection of thrombin. Chem Eur J 20:2888–2894. https://doi.org/10.1002/chem.201304556

    Article  CAS  PubMed  Google Scholar 

  15. Ma C, Wu K, Zhao H, Liu H, Wang K, Xia K (2018) Fluorometric aptamer-based determination of ochratoxin A based on the use of graphene oxide and RNase H-aided amplification. Microchim Acta 185(7):347. https://doi.org/10.1007/s00604-018-2885-4

    Article  CAS  Google Scholar 

  16. Liu R, Wu H, Lv L, Kang X, Cui C, Feng J, Guo Z (2018) Fluorometric aptamer based assay for ochratoxin A based on the use of exonuclease III. Microchim Acta 185(5):254. https://doi.org/10.1007/s00604-018-2786-6

    Article  CAS  Google Scholar 

  17. Wu H, Liu R, Kang X, Liang C, Lv L, Guo Z (2018) Fluorometric aptamer assay for ochratoxin A based on the use of single walled carbon nanohorns and exonuclease III-aided amplification. Microchim Acta 185(1):27–27. https://doi.org/10.1007/s00604-017-2592-6

    Article  CAS  Google Scholar 

  18. Yu X, Lin Y, Wang X, Xu L, Wang Z, Fu F (2018) Exonuclease-assisted multicolor aptasensor for visual detection of ochratoxin A based on G-quadruplex-hemin DNAzyme-mediated etching of gold nanorod. Microchim Acta 185(5):259. https://doi.org/10.1007/s00604-018-2811-9

    Article  CAS  Google Scholar 

  19. Yang C, Wang Y, Martyc JL, Yang X-R (2011) Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator. Biosens Bioelectron 26:2724–2727. https://doi.org/10.1016/j.bios.2010.09.032

    Article  CAS  PubMed  Google Scholar 

  20. Dai S-L, Wu S-J, Duan N, Wang Z-P (2016) A near-infrared magnetic aptasensor for ochratoxin A based on near-infrared upconversion nanoparticles and magnetic nanoparticles. Talanta 158:246–253. https://doi.org/10.1016/j.talanta.2016.05.063

    Article  CAS  PubMed  Google Scholar 

  21. Sun A-L, Zhang Y-F, Sun G-P, Wang X-N, Tang D-P (2017) Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. Biosens Bioelectron 89:659–665. https://doi.org/10.1016/j.bios.2015.12.032

    Article  CAS  PubMed  Google Scholar 

  22. Zhang X, Wu D, Liu Z (2014) An ultrasensitive label-free electrochemical biosensor for microRNA-21 detection based on a 2′-O-methyl modified DNAzyme and duplex-specific nuclease assisted target recycling. Chem Commun 50:12375–12377. https://doi.org/10.1039/c4cc05541a

    Article  CAS  Google Scholar 

  23. Liu Q, Liu C, Zhu G (2019) Electrochemiluminescent determination of the activity of uracil-DNA glycosylase: combining nicking enzyme assisted signal amplification and catalyzed hairpin assembly. Microchim Acta 186:4–10. https://doi.org/10.1007/s00604-019-3280-5

    Article  CAS  Google Scholar 

  24. Wang H-F, Ma R-N, Sun F (2018) A versatile label-free electrochemical biosensor for circulating tumor DNA based on dual enzyme assisted multiple amplification strategy. Biosens Bioelectron 122:224–230. https://doi.org/10.1016/j.bios.2018.09.028

    Article  CAS  PubMed  Google Scholar 

  25. Yan M-M, Bai W-H, Zhu C, Huang Y-F, Yan J, Chen A-L (2016) Design of nuclease-based target recycling signal amplification in aptasensors. Biosens Bioelectron 77:613–623. https://doi.org/10.1016/j.bios.2015.10.015

    Article  CAS  PubMed  Google Scholar 

  26. Jo E-J, Mun H, Kim S-J, Shim W-B, Kim M-G (2016) Detection of ochratoxin A (OTA) in coffee using chemiluminescence resonance energy transfer (CRET) aptasensor. Food Chem 194:1102–1107. https://doi.org/10.1016/j.foodchem.2015.07.152

    Article  CAS  PubMed  Google Scholar 

  27. Cruz JA, Penner G (2008) Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Anal Chem 80:8853–8855. https://doi.org/10.1021/ac8017058

    Article  CAS  Google Scholar 

  28. Klug SJ, Famulok M (1994) All you wanted to know about SELEX. Mol Biol Rep 20:97–107. https://doi.org/10.1007/BF00996358

    Article  CAS  PubMed  Google Scholar 

  29. Cruz JA, Penner G (2008) Determination of ochratoxin A with a DNA aptamer. J Agr Food Chem 56:10456–10461. https://doi.org/10.1021/jf801957h

    Article  CAS  Google Scholar 

  30. Holm AIS, Kohler B, Hoffmann SV (2010) Synchrotron radiation circular dichroism of various G-guadruplex structures. Biopolymers 93:429–433. https://doi.org/10.1002/bip.21354

    Article  CAS  PubMed  Google Scholar 

  31. Dong H, Chen H, Jiang J (2018) Highly sensitive electrochemical detection of tumor exosomes based on aptamer recognition-induced multi-DNA release and cyclic enzymatic amplification. Anal Chem 90:4507–4513. https://doi.org/10.1021/acs.analchem.7b04863

    Article  CAS  PubMed  Google Scholar 

  32. Sheng L, Ren J, Miao Y, Wang J, Wang E (2011) PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. Biosens Bioelectron 26(8):3494–3499. https://doi.org/10.1016/j.bios.2011.01.032

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Yan H, Shangguan J, Yang X, Wang M, Liu W (2018) A fluorometric aptamer-based assay for ochratoxin A using magnetic separation and a cationic conjugated fluorescent polymer. Microchim Acta 185(9):427. https://doi.org/10.1007/s00604-018-2962-8

    Article  CAS  Google Scholar 

  34. Lv L, Cui C, Liang C, Quan W, Wang S, Guo Z (2016) Aptamer-based single-walled carbon nanohorn sensors for ochratoxin A detection. Food Control 60:296–301. https://doi.org/10.1016/j.foodcont.2015.08.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (No. GK201802012) and Shaanxi Science Technology Plan Projects (No. 2017NY-121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Liu.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 15174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Li, X., Li, B. et al. A fluorometric aptamer-based assay for ochratoxin A by using exonuclease III-assisted recycling amplification. Microchim Acta 187, 46 (2020). https://doi.org/10.1007/s00604-019-3992-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3992-6

Keywords

Navigation