Skip to main content
Log in

Binary magnetic metal-organic frameworks composites: a promising affinity probe for highly selective and rapid enrichment of mono- and multi-phosphopeptides

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A binary magnetic metal-organic framework (MOF)-functionalized material (magG@PDA@Ni-MOF@Fe-MOF) was prepared through grafting Ni-MOF and Fe-MOF on magnetic (Fe3O4) graphene with polydopamine (PDA) as a middle layer. Compared with single MOFs functionalized materials (magG@PDA@Ni-MOF and magG@PDA@Fe-MOF) under the same conditions, magG@PDA@Ni-MOF@Fe-MOF not only displays lower detection limits (4 fmol) and selectivity (1:1000), but also has better enrichment efficiency for both multi- and monophosphopeptides. Other than this, magG@PDA@Ni-MOF@Fe-MOF exhibits fine reusability (five cycles) and rapid enrichment property (1 min), and 24 phosphopeptides were detected when it was applied to the analysis of human saliva.

The strategy of preparing a binary magnetic metal-organic framework (MOF)-functionalized material (magG@PDA@Ni-MOF@Fe-MOF) through grafting Ni-MOF and Fe-MOF on magnetic graphene with polydopamine (PDA) as a middle layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Peng JX, Niu H, Zhang HY, Yao YT, Zhao XY, Zhou XY, Wan LH, Kang XH, Wu RA (2018) Highly specific enrichment of multi-phosphopeptides by the diphosphorylated fructose-modified dual-metal-centered zirconium-organic framework. ACS Appl Mater Interfaces 10(38):32613–32621

    Article  CAS  Google Scholar 

  2. Zhao M, Xie YQ, Deng CH, Zhang XM (2014) Recent advances in the application of core-shell structured magnetic materials for the separation and enrichment of proteins and peptides. J Chromatogr A 1357:182–193

    Article  CAS  Google Scholar 

  3. Zhou JQ, Liang YL, He XM, Chen LX, Zhang YK (2017) Dual-functionalized magnetic metal-organic framework for highly specific enrichment of phosphopeptides. ACS Sustain Chem Eng 5(12):11413–11421

    Article  CAS  Google Scholar 

  4. Lundby A, Secher A, Lage K, Nordsborg NB, Dmytriyev A, Lundby C, Olsen JV (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3:876

    Article  Google Scholar 

  5. Xu HM, Liu M, Huang XD, Min QH, Zhu JJ (2018) Multiplexed quantitative MALDI MS approach for assessing activity and inhibition of protein kinases based on postenrichment dephosphorylation of phosphopeptides by metal-organic framework-templated porous CeO2. Anal Chem 90(16):9859–9867

    Article  CAS  Google Scholar 

  6. Chen YJ, Xiong ZC, Peng L, Gan YY, Zhao YM, Shen J, Qian JH, Zhang LY, Zhang WB (2015) Facile preparation of core-shell magnetic metal-organic framework nanoparticles for the selective capture of phosphopeptides. ACS Appl Mater Interfaces 7(30):16338–16347

    Article  CAS  Google Scholar 

  7. Yang SS, Chang YJ, Zhang H, Yu XZ, Shang WB, Chen GQ, Chen DDY, Gu ZY (2018) Enrichment of phosphorylated peptides with metal-organic framework nanosheets for serum profiling of diabetes and phosphoproteomics analysis. Anal Chem 90(22):13796–13805

    Article  CAS  Google Scholar 

  8. Steen H, Jebanathirajah JA, Rush J, Morrice N, Kirschner MW (2006) Phosphorylation analysis by mass spectrometry: myths, facts, and the consequences for qualitative and quantitative measurements. Mol Cell Proteomics 5(1):172–181

    Article  CAS  Google Scholar 

  9. Gao CH, Lin G, Lei ZX, Zheng Q, Lin JS, Lin Z (2017) Facile synthesis of core-shell structured magnetic covalent organic framework composite nanospheres for selective enrichment of peptides with simultaneous exclusion of proteins. J Mater Chem B 5(36):7496–7503

    Article  CAS  Google Scholar 

  10. Yao JZ, Sun NR, Wang JW, Xie YQ, Deng CH, Zhang XM (2017) Rapid synthesis of titanium(IV)-immobilized magnetic mesoporous silica nanoparticles for endogenous phosphopeptides enrichment. Proteomics 17(8):1600320

    Article  Google Scholar 

  11. Chen Y, Li DJ, Bie ZJ, He XP, Liu Z (2016) Coupling of phosphate-imprinted mesoporous silica nanoparticles-based selective enrichment with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for highly efficient analysis of protein phosphorylation. Anal Chem 88(2):1447–1454

    Article  CAS  Google Scholar 

  12. Chen CT, Wang LY, Ho YP (2011) Use of polyethylenimine-modified magnetic nanoparticles for highly specific enrichment of phosphopeptides for mass spectrometric analysis. Anal Bioanal Chem 399(8):2795–2806

    Article  CAS  Google Scholar 

  13. Luo B, Yang MG, Jiang PP, Lan F, Wu Y (2016) Multi-affinity sites of magnetic guanidyl-functionalized metal-organic framework nanospheres for efficient enrichment of global phosphopeptide. Nanoscale 10(18):8391–8396

    Article  Google Scholar 

  14. Yan YH, Zhang XG, Deng CH (2014) Designed synthesis of titania nanoparticles coated hierarchially ordered macro/mesoporous silica for selective enrichment of phosphopeptides. ACS Appl Mater Interfaces 6(8):5467–5471

    Article  CAS  Google Scholar 

  15. Su J, He XW, Chen LX, Zhan YK (2017) Adenosine phosphate functionalized magnetic mesoporous graphene oxide nanocomposite for highly selective enrichment of phosphopeptides. ACS Sustain Chem Eng 6(2):2188–2196

    Article  Google Scholar 

  16. Salimi K, Kip C, Celikbicak O, Usta DD, Pinar A, Salih B, Tuncel A (2019) Ti(IV) attached-phosphonic acid functionalized capillary monolith as a stationary phase for in-syringe-type fast and robust enrichment of phosphopeptides. Biomed Chromatogr 33(6):e4488

    Article  Google Scholar 

  17. Sun NR, Wang JW, Yao JZ, Chen HM, Deng CH (2019) Magnetite nanoparticles coated with mercaptosuccinic acid-modified mesoporous titania as a hydrophilic sorbent for glycopeptides and phosphopeptides prior to their quantitation by LC-MS/MS. Microchim Acta 186(3)

  18. Zhang KN, Hu DH, Deng SM, Han M, Wang XF, Liu HL, Liu Y, Xie MX (2019) Phytic acid functionalized Fe3O4 nanoparticles loaded with Ti(IV) ions for phosphopeptide enrichment in mass spectrometric analysis. Microchim Acta 186(2):68

    Article  Google Scholar 

  19. Wang JW, Wang ZD, Sun NR, Deng CH (2019) Immobilization of titanium dioxide/ions on magnetic microspheres for enhanced recognition and extraction of mono- and multi-phosphopeptides. Microchim Acta 186(4)

  20. Peng JX, Zhang HY, Li X, Liu SJ, Zha XY, Wu J, Kang XH, Qin HQ, Pan ZF, Wu RA (2016) Dual-metal centered zirconium-organic framework: a metal-affinity probe for highly specific interaction with phosphopeptides. ACS Appl Mater Interfaces 8(51):35012–35020

    Article  CAS  Google Scholar 

  21. Xiao J, Yang SS, Wu JX, Wang H, Yu XZ, Shang WB, Chen GQ, Gu ZY (2019) Highly selective capture of monophosphopeptides by two-dimensional metal-organic framework nanosheets. Anal Chem 91(14):9093–9101

    Article  CAS  Google Scholar 

  22. Maka VK, Mukhopadhyay A, Savitha G, Moorthy JN (2018) Fluorescent 2D metal-organic framework nanosheets (MONs): design, synthesis and sensing of explosive nitroaromatic compounds (NACs). Nanoscale 10(47):22389–22399

    Article  CAS  Google Scholar 

  23. Van de Voorde B, Ameloot R, Stassen I, Everaert M, De Vos D, Tan JC (2013) Mechanical properties of electrochemically synthesised metal-organic framework thin films. J Mater Chem C 1(46):7716–7724

    Article  Google Scholar 

  24. Jiang M, Li J, Cai XF, Zhao Y, Pan LJ, Cao QQ, Wang DH, Du YW (2018) Ultrafine bimetallic phosphide nanoparticles embedded in carbon nanosheets: two-dimensional metal-organic framework-derived non-noble electrocatalysts for the highly efficient oxygen evolution reaction. Nanoscale 10(42):19774–19780

    Article  CAS  Google Scholar 

  25. Wen LL, Zhou L, Zhang BG, Meng XG, Qu H, Li DF (2012) Multifunctional amino-decorated metal-organic frameworks: nonlinear-optic, ferroelectric, fluorescence sensing and photocatalytic properties. J Mater Chem 22(42):22603–22609

    Article  CAS  Google Scholar 

  26. Dmello ME, Sundaram NG, Singh A, Singh AK, Kalidindi SB (2019) An amine functionalized zirconium metal-organic framework as an effective chemiresistive sensor for acidic gases. Chem Commun 55(3):349–352

    Article  CAS  Google Scholar 

  27. Huan WW, Xing MY, Cheng C, Li J (2018) Facile fabrication of magnetic metal-organic framework nanofibers for specific capture of phosphorylated peptides. ACS Sustain Chem Eng 7(2):2245–2254

    Article  Google Scholar 

  28. Jiang JB, Sun XN, She XJ, Li JJ, Li Y, Deng CH, Duan GL (2018) Magnetic microspheres modified with Ti(IV) and Nb(V) for enrichment of phosphopeptides. Microchim Acta 185(6):309

    Article  Google Scholar 

  29. Liu QJ, Sun NR, Gao MX, Deng CH (2018) Magnetic binary metal-organic framework as a novel affinity probe for highly selective capture of endogenous phosphopeptides. ACS Sustain Chem Eng 6(3):4382–4389

    Article  CAS  Google Scholar 

  30. Rui K, Zhao GQ, Chen YP, Lin Y, Zhou Q, Chen JY, Zhu JX, Sun WP, Huang W, Dou SX (2018) Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis. Adv Funct Mater 28(26):1801554

    Article  Google Scholar 

  31. Zeng J, Ji XX, Ma YH, Zhang ZX, Wang SG, Ren ZH, Zhi CY, Yu J (2018) 3D graphene fibers grown by thermal chemical vapor deposition. Adv Mater 30(12):1705380

    Article  Google Scholar 

  32. Fei HL, Dong JC, Wan CZ, Zhao ZP, Xu X, Lin ZY, Wang YL, Liu HT, Zang KT, Luo J, Zhao SL, Hu W, Yan WS, Shakir I, Huang Y, Duan XF (2018) Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv Mater 30(35):1802146

    Article  Google Scholar 

  33. Wang YX, Wang SH, Niu HY, Ma YR, Zeng T, Cai YQ, Meng ZF (2013) Preparation of polydopamine coated Fe3O4 nanoparticles and their application for enrichment of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A 1283:20–26

    Article  CAS  Google Scholar 

  34. Liu YL, Ai KL, Lu LH (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114(9):5057–5115

    Article  CAS  Google Scholar 

  35. Sun NR, Deng CH, Li Y, Zhang XM (2014) Size-exclusive magnetic graphene/mesoporous silica composites with titanium(IV)-immobilized pore walls for selective enrichment of endogenous phosphorylated peptides. ACS Appl Mater Interfaces 6(14):11799–11804

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Zhejiang Natural Science Foundation (LQ19C050002), Ningbo Natural Science Foundation (2018A610279), and the K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinghua Yan or Keqi Tang.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2733 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Liu, B., Yan, Y. et al. Binary magnetic metal-organic frameworks composites: a promising affinity probe for highly selective and rapid enrichment of mono- and multi-phosphopeptides. Microchim Acta 186, 832 (2019). https://doi.org/10.1007/s00604-019-3916-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3916-5

Keywords

Navigation