Skip to main content
Log in

Electrochemical lead(II) biosensor by using an ion-dependent split DNAzyme and a template-free DNA extension reaction for signal amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A voltammetric biosensor for lead(II) (Pb2+) is described that is based on signal amplification by using an ion-dependent split DNAzyme and template-free DNA extension reaction. The Pb2+-dependent split DNAzyme was assembled on gold nanoparticles (Au@Fe3O4), and this nanoprobe then was exposed to Pb2+ which causes the split-off of DNAzymes to release primers containing 3′-OH groups (S1 and S2). The template-free DNA extension reaction triggers the generation of long ssDNA nanotails, which then can bind the free redox probe N,N′-bis(2-(trimethylammonium iodide)propylene)perylene-3,4,9,10-tetracarboxyldiimide (PDA+) via electrostatic adsorption. Hence, the concentration of PDA+ in solution is reduced. Therefore, less free PDA+ can be immobilized on a glassy carbon electrode modified with electrodeposited gold nanoparticles (depAu) to produce an electrochemical signal, typically measured at ∼0.38 V (vs. SCE) for quantitation of Pb2+. The use of a Pb2+-dependent split DNAzyme avoids the usage of a proteinic enzyme. It also increases the sensitivity of the sensor which has a lower detection limit of 30 pM of Pb2+.

Novel electrochemical biosensor based on the amplification of ion-dependent split DNAzyme and template-free DNA extension reaction for trace detection of Pb2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sun J, Luo L (2018) Subcellular distribution and chemical forms of Pb in corn: strategies underlying tolerance in Pb stress. J Agric Food Chem 66(26):6675–6682

    CAS  PubMed  Google Scholar 

  2. Zhu H, Tan X, Tan L, Zhang H, Liu H, Fang M, Wang X (2018) Magnetic porous polymers prepared via high internal phase emulsions for efficient removal of Pb2+ and Cd2+. ACS Sustain Chem Eng 6(4):5206–5213

    CAS  Google Scholar 

  3. Tang DP, Xia BY, Tang Y, Zhang J, Zhou Q (2019) Metal-ion-induced DNAzyme on magnetic beads for detection of lead (II) by using rolling circle amplification, glucose oxidase, and readout of pH changes. Microchim Acta 186(5):318–326

    Google Scholar 

  4. Islam E, Liu D, Li T, Yang X, Jin X, Khan MA, Mahmood Q, Hayat Y, Imtiaz M (2011) Effect of Pb toxicity on the growth and physiology of two ecotypes of Elsholtzia argyi and its alleviation by Zn. Environ Toxicol 26(4):403–416

    CAS  PubMed  Google Scholar 

  5. Lo W, Chua H, Lam KH, Bi SP (1999) A comparative investigation on the biosorption of lead by filamentous fungal biomass. Chemosphere 39(15):2723–2736

    CAS  PubMed  Google Scholar 

  6. Huang MR, Ding YB, Li XG (2014) Combinatorial screening of potentiometric Pb (II) sensors from polysulfoaminoanthraquinone solid ionophore. ACS Comb Sci 16(3):128–138

    CAS  PubMed  Google Scholar 

  7. Zhu CH, Zhu WY, Xu L, Zhou XM (2019) A label-free electrochemical aptasensor based on magnetic biocomposites with Pb2+-dependent DNAzyme for the detection of thrombin. Anal Chim Acta 1047:21–27

    CAS  PubMed  Google Scholar 

  8. Shi Y, Wang HY, Jiang XX, Sun B, Song B, Su YY, He Y (2016) Ultrasensitive, specific, recyclable, and reproducible detection of lead ions in real systems through a polyadenine-assisted, surface-enhanced Raman scattering silicon chip. Anal Chem 88(7):3723–3729

    CAS  PubMed  Google Scholar 

  9. Deng DD, Yang H, Liu C, Zhao K, Li JG, Deng AP (2019) Ultrasensitive detection of diclofenac in water samples by a novel surface-enhanced Raman scattering (SERS)-based immunochromatographic assay using AgMBA@ SiO2-Ab as immunoprobe. Sensor Actuat B-Chem 283:563–570

    CAS  Google Scholar 

  10. Shi XH, Gu W, Peng WD, Li BY, Chen NN, Zhao K, Xian YZ (2014) Sensitive Pb2+ probe based on the fluorescence quenching by graphene oxide and enhancement of the leaching of gold nanoparticles. ACS Appl Mater Inter 6(4):2568–2575

    CAS  Google Scholar 

  11. Annadhasan M, Muthukumarasamyvel T, Sankar Babu VR, Rajendiran N (2014) Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium. ACS Sustain Chem Eng 2(4):887–896

    CAS  Google Scholar 

  12. Lei YM, Huang WX, Zhao M, Chai YQ, Yuan R, Zhuo Y (2015) Electrochemiluminescence resonance energy transfer system: mechanism and application in ratiometric aptasensor for lead ion. Anal Chem 87(15):7787–7794

    CAS  PubMed  Google Scholar 

  13. Kashi MB, Silva SM, Yang Y, Goncales VR, Parker SG, Barfidokht A, Ciampi S, Gooding JJ (2017) Light-activated electrochemistry without surface-bound redox species. Electrochim Acta 251:250–255

    CAS  Google Scholar 

  14. Sun QW, Wang JK, Tang MH, Huang LM, Zhang ZY, Liu C, Lu XH, Hunter KW, Chen GS (2017) A new electrochemical system based on a flow-field shaped solid electrode and 3D-printed thin-layer flow cell: detection of Pb2+ ions by continuous flow accumulation square-wave anodic stripping voltammetry. Anal Chem 89(9):5024–5029

    CAS  PubMed  Google Scholar 

  15. Hu Q, Kong JM, Han DX, Niu L, Zhang XL (2019) Electrochemical DNA Biosensing via Electrochemically Controlled Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Sens 4(1):235–241

    CAS  PubMed  Google Scholar 

  16. Ma L, Guo T, Pan SL, Zhang YH (2018) A fluorometric aptasensor for patulin based on the use of magnetized graphene oxide and DNase I-assisted target recycling amplification. Microchim Acta 185(10):487–492

    Google Scholar 

  17. Han C, Li RG, Li H, Liu S, Xu CG, Wang JF, Wang Y, Huang JD (2017) Ultrasensitive voltammetric determination of kanamycin using a target-triggered cascade enzymatic recycling couple along with DNAzyme amplification. Microchim Acta 184(8):2941–2948

    CAS  Google Scholar 

  18. Zhang JP, Chao LC, Zhi X, Ramon GR, Liu YL, Zhang CL, Pan F, Cui DX (2016) Hairpin DNA-templated silver nanoclusters as novel beacons in strand displacement amplification for microRNA detection. Anal Chem 88(2):1294–1302

    CAS  PubMed  Google Scholar 

  19. Li MX, Xu CH, Zhang N, Qian GS, Zhao WW, Xu JJ, Chen HY (2018) Exploration of the kinetics of toehold-mediated strand displacement via plasmon rulers. ACS Nano 12(7):3341–3350

    CAS  PubMed  Google Scholar 

  20. Chen F, Zhao Y, Fan CH, Zhao YX (2015) Mismatch extension of DNA polymerases and high-accuracy single nucleotide polymorphism diagnostics by gold nanoparticle-improved isothermal amplification. Anal Chem 87(17):8718–8723

    CAS  PubMed  Google Scholar 

  21. Yao Q, Wang YQ, Wang J, Chen SM, Liu HY, Jiang ZR, Zhang XE, Liu SM, Yuan Q, Zhou X (2018) An ultrasensitive diagnostic biochip based on biomimetic periodic nanostructure-assisted rolling circle amplification. ACS Nano 12(7):6777–6783

    CAS  PubMed  Google Scholar 

  22. Zhao WA, Ali MM, Brook MA, Li YF (2008) Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Angew Chem Int Ed 47:6330–6337

    CAS  Google Scholar 

  23. Chen Y, Xu J, Su J, Xiang Y, Yuan R, Chai YQ (2012) In situ hybridization chain reaction amplification for universal and highly sensitive electrochemiluminescent detection of DNA. Anal Chem 84(18):7750–7755

    CAS  PubMed  Google Scholar 

  24. He Z, Cai Y, Yang Z, Li P, Lei H, Liu W, Liu Y (2019) A dual-signal readout enzyme-free immunosensor based on hybridization chain reaction-assisted formation of copper nanoparticles for the detection of microcystin-LR. Biosens Bioelectron 126:151–159

    CAS  PubMed  Google Scholar 

  25. Cao HM, Zhou X, Zeng Y (2019) Microfluidic exponential rolling circle amplification for sensitive microRNA detection directly from biological samples. Sensor Actuat B-Chem 279:447–457

    CAS  Google Scholar 

  26. Reid MS, Rebecca E, Paliwoda RE, Zhang HQ, Le XC (2018) Reduction of background generated from template-template hybridizations in the exponential amplification reaction. Anal Chem 90(18):11033–11039

    CAS  PubMed  Google Scholar 

  27. Zhang M, Wang Y, Yuan S, Sun X, Huo B, Bai J, Gao Z (2019) Competitive fluorometric assay for the food toxin T-2 by using DNA-modified silver nanoclusters, aptamer-modified magnetic beads, and exponential isothermal amplification. Microchim Acta 186(4):219–225

    Google Scholar 

  28. Yu CY, Yin BC, Wang SL, Xu ZG, Ye BC (2014) Improved ligation-mediated PCR method coupled with T7 RNA polymerase for sensitive DNA detection. Anal Chem 86(15):7214–7218

    CAS  PubMed  Google Scholar 

  29. Du WF, Ge JH, Li JJ, Tang LJ, Yu RQ, Jiang JH (2019) Single-step, high-specificity detection of single nucleotide mutation by primer-activatable loop-mediated isothermal amplification (PA-LAMP). Anal Chim Acta 1050:132–138

    CAS  PubMed  Google Scholar 

  30. Cai S, Jung C, Bhadra S, Ellington A (2018) Phosphorothioated primers lead to loop-mediated isothermal amplification at low temperatures. Anal Chem 90(14):8290–8294

    CAS  PubMed  Google Scholar 

  31. Du YC, Cui YX, Li XY, Sun GY, Zhang YP, Tang AN, Kong DM (2018) Terminal deoxynucleotidyl transferase and T7 exonuclease-aided amplification strategy for ultrasensitive detection of uracil-DNA glycosylase. Anal Chem 90(14):8629–8634

    CAS  PubMed  Google Scholar 

  32. Yang F, Yang X, Wang YZ, Qin Y, Liu X, Yan XQ, Zou K, Ning Y, Zhang GJ (2014) Template-independent, in situ grown DNA nanotail enabling label-free femtomolar chronocoulometric detection of nucleic acids. Anal Chem 86(23):11905–11912

    CAS  PubMed  Google Scholar 

  33. Xie SB, Dong YW, Yuan YL, Chai YQ, Yuan R (2016) Ultrasensitive lipopolysaccharides detection based on doxorubicin conjugated N-(Aminobutyl)-N-(ethylisoluminol) as electrochemiluminescence indicator and self-assembled tetrahedron DNA dendrimers as nanocarriers. Anal Chem 88(10):5218–5224

    CAS  PubMed  Google Scholar 

  34. Niu XF, Zhong YB, Chen R, Wang F, Liu YJ, Luo D (2018) A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles. Sensor Actuat B-Chem 255:1577–1581

    CAS  Google Scholar 

  35. Wang Y, Wang J, Yang F, Yang XR (2010) Spectrophotometric detection of lead(II) ion using unimolecular peroxidase-like deoxyribozyme. Microchim Acta 171:195–201

    CAS  Google Scholar 

  36. Chai F, Wang CG, Wang TT, Li L, Su ZM (2010) Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces 2:1466–1470

    CAS  PubMed  Google Scholar 

  37. Lidia M, Crina S, Maria C, Florina P, Marcela CR, Stefan G, Stela P (2017) Electrochemical platform based on nitrogendoped graphene/chitosan nanocomposite for selective Pb2+ detection. Nanotechnology 28:114001–1140012

    Google Scholar 

  38. Huang ZJ, Chen JM, Luo ZW, Wang XQ, Duan YX (2019) Label-free and enzyme-free colorimetric detection of Pb2+ based on RNA cleavage and annealing-accelerated hybridization chain reaction. Anal Chem 917:4806–4813

    Google Scholar 

  39. Lu HZ, Xu SF, Liu JQ (2019) One pot generation of blue and red carbon dots in one binary solvent system for dual channel detection of Cr3+ and Pb2+ based on ion imprinted fluorescence polymers. ACS Sens 4:1917–1924

    CAS  PubMed  Google Scholar 

  40. Cui L, Wu J, Li Jie JHX (2015) Electrochemical sensor for lead cation sensitized with a DNA functionalized porphyrinic metal-organic framework. Anal Chem 87:10635–10641

    CAS  PubMed  Google Scholar 

  41. Song XL, Wang Y, Liu S, Zhang X, Wang JF, Wang HW, Zhang FF, Yu JH, Huang JD (2019) A triply amplified electrochemical lead(II) sensor by using a DNAzyme and via formation of a DNA-gold nanoparticle network induced by a catalytic hairpin assembly. Microchim Acta 186:559–566

    Google Scholar 

  42. Shahdordizadeh M, Yazdian-Robati R, Ansari N, Ramezani M, Abnous K, Taghdisi SM (2018) An aptamer-based colorimetric lead(II) assay based on the use of gold nanoparticles modified with dsDNA and exonuclease I. Microchim Acta 185:151–156

  43. Ravikumar A, Panneerselvam P, Radhakrishnan K (2018) Fluorometric determination of lead(II) and mercury(II) based on their interaction with a complex formed between graphene oxide and a DNAzyme. Microchim Acta 185:2–9

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (XDJK2019B022, SWU117045), the Chongqing Research Program of Basic Research and Frontier Technology (cstc2018jcyjA0797) and the national key research and development plan of China (2018YFD0800600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yali Yuan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Deng, H., Yuan, R. et al. Electrochemical lead(II) biosensor by using an ion-dependent split DNAzyme and a template-free DNA extension reaction for signal amplification. Microchim Acta 186, 709 (2019). https://doi.org/10.1007/s00604-019-3857-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3857-z

Keywords

Navigation