Skip to main content
Log in

Electrochemical exfoliation of pencil graphite for preparation of graphene coating as a new versatile SPME fiber for determination of polycyclic aromatic hydrocarbons by gas chromatography

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A graphene coating was prepared through electrochemical exfoliation of pencil graphite and then used as a fiber coating for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons (PAHs) from water samples by GC analysis technique with flame ionization detector since flame ionization detector work according to the principle of ions released in the combustion of the sample species if there are any organic compounds. The graphene layers were produced by applying an anodic voltage of +2 V to the pencil graphite electrode in 1 M sulfuric acid solution as an electrolyte. The adsorbent was characterized by using scanning electron microscopy. Following thermal desorption, the PAHs (specfically naphthalene, acenaphthene, fullerene, phenanthrene, anthracene and fluoranthene) were quantified by GC. Under optimum conditions (extraction temperature, 65 °C; extraction time, 35 min; salt concentration of 20% w/v; desorption temperature, 260 °C; desorption time, 5 min), the limits of detection range between 10 and 90 ng L−1, and the linear ranges extend from 0.05–50 μg L−1. The repeatability of the extraction process and the fiber-to-fiber reproducibility were in the ranges of 4.3–0.2% and 7.3–9.8%, respectively.

Schematic representation of electrochemical exfoliation of pencil core to prepare a headspace solid phase microextraction (HS-SPME) graphene fiber coating. After applying a voltage, the graphene nanosheets thus produced are used for determination of polycyclic aromatic hydrocarbons (PAHs) in water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148. https://doi.org/10.1021/ac00218a019

    Article  CAS  Google Scholar 

  2. Jeleń H, Majcher M, Gracka A (2017) Application of solid phase microextraction in food analysis—flavor and off-flavor sampling. In: Ouyang G, Jiang R (eds) Solid phase microextraction: recent developments and applications. Springer, Berlin, Heidelberg, pp 223–246

    Google Scholar 

  3. Prosen H, Zupančič-Kralj L (1999) Solid-phase microextraction. TrAC Trend Anal Chem 18:272–282. https://doi.org/10.1016/S0165-9936(98)00109-5

    Article  CAS  Google Scholar 

  4. Yang L, Luan T (2017) Application of solid-phase microextraction combined with derivatization for polar compound sampling in environmental analysis. In: Ouyang G, Jiang R (eds) Solid phase microextraction: recent developments and applications. Springer, Berlin, Heidelberg, pp 177–222

    Google Scholar 

  5. Boyacı E, Rodríguez-Lafuente A, Gorynski K, Mirnaghi F, Souza-Silva EA, Hein D, Pawliszyn J (2015) Sample preparation with solid phase microextraction and exhaustive extraction approaches: comparison for challenging cases. Anal Chim Acta 873:14–30. https://doi.org/10.1016/j.aca.2014.12.051

    Article  CAS  PubMed  Google Scholar 

  6. Piri-Moghadam H, Ahmadi F, Pawliszyn J (2016) A critical review of solid phase microextraction for analysis of water samples. TrAC Trend Anal Chem 85:133–143. https://doi.org/10.1016/j.trac.2016.05.029

    Article  CAS  Google Scholar 

  7. Sarafraz-Yazdi A, Razavi N (2015) Application of molecularly-imprinted polymers in solid-phase microextraction techniques. TrAC Trend Anal Chem 73:81–90. https://doi.org/10.1016/j.trac.2015.05.004

    Article  CAS  Google Scholar 

  8. Xie L, Liu S, Han Z, Jiang R, Liu H, Zhu F, Zeng F, Su C, Ouyang G (2015) Preparation and characterization of metal-organic framework MIL-101(Cr)-coated solid-phase microextraction fiber. Anal Chim Acta 853:303–310. https://doi.org/10.1016/j.aca.2014.09.048

    Article  CAS  PubMed  Google Scholar 

  9. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  10. Yang W, Chen G, Shi Z, Liu CC, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G (2013) Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat Mater 12:792–797. https://doi.org/10.1038/nmat3695

    Article  CAS  PubMed  Google Scholar 

  11. Narita A, Wang XY, Feng X, Mullen K (2015) New advances in nanographene chemistry. Chem Soc Rev 44:6616–6643. https://doi.org/10.1039/c5cs00183h

    Article  CAS  PubMed  Google Scholar 

  12. Zhang X, Wang L, Xin J, Yakobson BI, Ding F (2014) Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. J Am Chem Soc 136:3040–3047. https://doi.org/10.1021/ja405499x

    Article  CAS  PubMed  Google Scholar 

  13. Yan Z, Peng Z, Tour JM (2014) Chemical vapor deposition of graphene single crystals. Acc Chem Res 47:1327–1337. https://doi.org/10.1021/ar4003043

    Article  CAS  PubMed  Google Scholar 

  14. Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43:291–312. https://doi.org/10.1039/c3cs60303b

    Article  CAS  PubMed  Google Scholar 

  15. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568. https://doi.org/10.1038/nnano.2008.215

    Article  CAS  PubMed  Google Scholar 

  16. Ciesielski A, Samori P (2014) Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev 43:381–398. https://doi.org/10.1039/c3cs60217f

    Article  CAS  PubMed  Google Scholar 

  17. Zhang S, Du Z, Li G (2013) Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples. Talanta 115:32–39. https://doi.org/10.1016/j.talanta.2013.04.029

    Article  CAS  PubMed  Google Scholar 

  18. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274. https://doi.org/10.1038/nnano.2008.83

    Article  CAS  PubMed  Google Scholar 

  19. Parvez K, Li RJ, Puniredd SR, Hernandez Y, Hinkel F, Wang SH, Feng XL, Müllen K (2013) Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 7:3598. https://doi.org/10.1021/nn400576v

    Article  CAS  PubMed  Google Scholar 

  20. Parvez K, Wu ZS, Li R, Liu X, Graf R, Feng X, Müllen K (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136:6083–6091. https://doi.org/10.1021/ja5017156

    Article  CAS  PubMed  Google Scholar 

  21. Su CY, Lu AY, Xu YP, Chen FR, Khlobystov AN, Li LJ (2011) High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5:2332. https://doi.org/10.1021/nn200025p

    Article  CAS  PubMed  Google Scholar 

  22. Low CTJ, Walsh FC, Chakrabarti MH, Hashim MA, Hussain MA (2013) Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon 54:1. https://doi.org/10.1016/j.carbon.2012.11.030

    Article  CAS  Google Scholar 

  23. Abdelkader AM, Cooper AJ, Dryfe RAW, Kinloch IA (2015) How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale 7:6944. https://doi.org/10.1039/C4NR06942K

    Article  CAS  PubMed  Google Scholar 

  24. Manoli E, Samara C (1999) Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis. TrAC Trend Anal Chem 18:417–428. https://doi.org/10.1016/S0165-9936(99)00111-9

    Article  CAS  Google Scholar 

  25. Nieva-Cano MJ, Rubio-Barroso S, Santos-Delgado MJ (2001) Determination of PAH in food samples by HPLC with fluorimetric detection following sonication extraction without sample clean-up. Analyst 126:1326–1133. https://doi.org/10.1039/B102546P

    Article  CAS  PubMed  Google Scholar 

  26. Zanjani MRK, Yamini Y, Shariati S, Jonsson JA (2007) A new liquid-phase microextraction method based on solidification of floating organic drop. Anal Chim Acta 585:286–293. https://doi.org/10.1016/j.aca.2006.12.049

    Article  CAS  Google Scholar 

  27. Shariati-Feizabadi S, Yamini Y, Bahramifar N (2003) Headspace solvent microextraction and gas chromatographic determination of some polycyclic aromatic hydrocarbons in water sample. Anal Chim Acta 489:21–31. https://doi.org/10.1016/S0003-2670(03)00709-8

    Article  CAS  Google Scholar 

  28. Wei MC, Jen JF (2007) Determination of polycyclic aromatic hydrocarbons in aqueous samples by microwave assisted headspace solid-phase microextraction and gas chromatography/flame ionization detection. Talanta 72:1269–1274. https://doi.org/10.1016/j.talanta.2007.01.017

    Article  CAS  PubMed  Google Scholar 

  29. Mollahosseini A, Rokue M, Mojtahedi MM, Toghroli M, Kamankesh M, Motaharian A (2016) Mechanical stir bar sorptive extraction followed by gas chromatography as a new method for determining polycyclic aromatic hydrocarbons in water samples. Microchem J 126:431–437. https://doi.org/10.1016/j.microc.2016.01.001

    Article  CAS  Google Scholar 

  30. Amiri A, Ghaemi F (2017) Graphene grown on stainless steel mesh as a highly efficient sorbent for sorptive microextraction of polycyclic aromatic hydrocarbons from water samples. Anal Chim Acta 994:29–37. https://doi.org/10.1016/j.aca.2017.08.049

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from University of Kurdistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soleiman Bahar.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakerian, R., Bahar, S. Electrochemical exfoliation of pencil graphite for preparation of graphene coating as a new versatile SPME fiber for determination of polycyclic aromatic hydrocarbons by gas chromatography. Microchim Acta 186, 861 (2019). https://doi.org/10.1007/s00604-019-3851-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3851-5

Keywords

Navigation