Skip to main content
Log in

Nanostructured MXene-based biomimetic enzymes for amperometric detection of superoxide anions from HepG2 cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel MXene-based biomimetic enzyme was synthesized using adenosine triphosphate (ATP) as a template to modify a Mn3(PO4)2 nanostructure on Mxene-Ti3C2 nanosheets. The resulting composite was used as an electrode material in an electrochemical sensor for superoxide anion (O2•−). It displays excellent catalytic properties which is attributed to the synergistic effects of the two-dimensional conductive substrate and the Mn3(PO4)2 nanoparticles. The addition of ATP results in the formation of a porous and ordered nanostructure of Mn3(PO4)2. This facilitates the electron transfer between O2•− and electrode. The sensor, best operated at 0.75 V (vs. Ag/AgCl), displays a rapid amperometric response with a detection limit of 0.5 nM and an analytical range that extends from 2.5 nM to 14 μM. Conceivably, it has potential in the detection of O2•− released by living cells.

Nanostructured MXenes were synthesized by in-situ growth of Mn3(PO4)2 on Ti3C2 nanosheets under the induction of adenosine triphosphate (ATP). They display enzyme mimickong properties. A sensor fabricated with the composites can be used for the detection of superoxide anions released by HepG2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tang Q, Zhou Z, Shen P (2012) Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc 134:16909–16916

    Article  CAS  Google Scholar 

  2. Hu H, Bai Z, Niu B, Wu M, Hua T (2018) Binder-free bonding of modularized MXene thin films into thick film electrodes for on-chip micro-supercapacitors with enhanced areal performance metrics. J Mater Chem A 6:14876–14884

    Article  CAS  Google Scholar 

  3. Lorencova L, Bertok T, Dosekova E, Holazova A, Paprckova D, Vikartovska A, Sasinkova V, Filip J, Kasak P, Jerigova M, Velic D, Mahmoude KA, Tkac J (2017) Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. Electrochim Acta 235:471–479

    Article  CAS  Google Scholar 

  4. Guo J, Peng Q, Fu H, Zou G, Zhang Q (2015) Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations. J Phys Chem C 119:20923–20930

    Article  CAS  Google Scholar 

  5. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253

    Article  CAS  Google Scholar 

  6. Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341:1502–1505

    Article  CAS  Google Scholar 

  7. Xu B, Zhu M, Zhang W, Zhen X, Pei Z, Xue Q, Zhi C, Shi P (2016) Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv Mater 28:3333–3339

    Article  CAS  Google Scholar 

  8. Sinha A, Dhanjai, Zhao H, Huang Y, Lu X, Chen J, Jain R (2018) MXene: an emerging material for sensing and biosensing. Trends Anal Chem 105:424–435

    Article  CAS  Google Scholar 

  9. Wang F, Yang CH, Duan CY, Xiao D, Tang Y, Zhu JF (2015) TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens Bioelectron 74:1022–1028

    Article  CAS  Google Scholar 

  10. Liu H, Duan C, Yang C, Shen W, Wang F, Zhu Z (2015) A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sensors Actuators B 218:60–66

    Article  CAS  Google Scholar 

  11. Rakhi RB, Nayak P, Xia C, Alshareef HN (2016) Novel amperometric glucose biosensor based on MXene nanocomposite. Sci Rep 6:36422–36431

    Article  CAS  Google Scholar 

  12. Zheng J, Wang B, Ding A, Weng B, Chen J (2018) Synthesis of MXene/DNA/Pd/Pt nanocomposite for sensitive detection of dopamine. J Electroanal Chem 816:189–194

    Article  CAS  Google Scholar 

  13. Zweier JL, Talukder MA (2006) The role of oxidants and free radicals in reperfusion injury. Talukder, Cardiovasc Res 70:181–190

    Article  CAS  Google Scholar 

  14. Ganesana M, Erlichman JS, Andreescu S (2012) Real-time monitoring of superoxide accumulation and antioxidant activity in a brain slice model using an electrochemical cytochrome c biosensor. Free Radic Biol Med 53:2240–2249

    Article  CAS  Google Scholar 

  15. Liu Y, Wei H, Jiang X, Guo H, Liu X (2018) Synthesis of metal–organic frameworks derived nanocomposites for superoxide anion radical sensing and cell monitoring upon oxidative stress. J Electroanal Chem 820:51–59

    Article  CAS  Google Scholar 

  16. Wang MQ, Ye C, Bao SJ, Xu MW, Zhang Y, Wang L, Ma XQ, Guo J, Li CM (2017) Nanostructured cobalt phosphates as excellent biomimetic enzymes to sensitively detect superoxide anions released from living cells. Biosens Bioelectron 87:998–1004

    Article  CAS  Google Scholar 

  17. Liu X, Ran M, Liu G, Liu X, Xue Z, Lu X (2018) A sensitively non-enzymatic amperometric sensor and its application in living cell superoxide anion radical detection. Talanta 186:248–255

    Article  CAS  Google Scholar 

  18. Liu L, Zhao H, Shi L, Lan M, Zhang H, Yu C (2017) Enzyme- and metal-free electrochemical sensor for highly sensitive superoxide anion detection based on nitrogen doped hollow mesoporous carbon spheres. Electrochim Acta 227:69–76

    Article  CAS  Google Scholar 

  19. Wang Y, Wang M, Lei L, Chen Z, Liu Y, Bao S (2018) FePO4 embedded in nanofibers consisting of amorphous carbon and reduced graphene oxide as an enzyme mimetic for monitoring superoxide anions released by living cells. Microchim Acta 185:140–145

    Article  Google Scholar 

  20. Seenivasan R, Kumar SN, Kalpana B, Govindaswamy I, Kumar SS, Chandran K (2011) Electrochemical sensor for simultaneous measurement of nitrite and superoxide anion radical using superoxide dismutase-mimetic manganese(III) Tetrakis(1-methyl-4-pyridyl)Porphyrin on Polypyrrole matrix. Sens Lett 9:1682–1688

    Article  Google Scholar 

  21. Ding A, Liu F, Zheng J, Chen J, Li C, Wang B (2018) Synthesis of manganese oxide embedded carbon nanofibers as effective biomimetic enzymes for sensitive detection of superoxide anions released from living cells. Macromol Mater Eng 303:1800079

    Article  Google Scholar 

  22. Hu FX, Kang YJ, Du F, Zhu L, Xue YH, Chen T, Dai LM, Li CM (2015) Living cells directly growing on a DNA/Mn3(PO4)2 -immobilized and vertically aligned CNT Array as a free-standing hybrid film for highly sensitive in situ detection of released superoxide anions. Adv Funct Mater 25:5924–5932

    Article  CAS  Google Scholar 

  23. Ding A, Wang B, Ma X, Diao J, Zheng J, Chen J, Li C (2018) DNA-induced synthesis of biomimetic enzyme for sensitive detection of superoxide anions released from live cell. RSC Adv 8:12354–12359

    Article  CAS  Google Scholar 

  24. Ma X, Hu W, Guo C, Yu L, Gao L, Xie J, Li CM (2014) DNA-templated biomimetic enzyme sheets on carbon nanotubes to sensitively in situ detect superoxide anions released from cells. Adv Funct Mater 24:5897–5903

    Article  CAS  Google Scholar 

  25. Shen X, Wang Q, Liu Y, Xue W, Ma L, Feng S, Wan M, Wang F, Mao C (2016) Manganese phosphate self-assembled nanoparticle surface and its application for superoxide anion detection. Sci Rep 6:28989–28998

    Article  CAS  Google Scholar 

  26. Peng F, Xu T, Wu F, Ma C, Liu Y, Li J, Zhao B, Mao C (2017) Novel biomimetic enzyme for sensitive detection of superoxide anions. Talanta 174:82–91

    Article  CAS  Google Scholar 

  27. Halim J, Cook KM, Naguib M, Eklund P, Gogotsi Y, Rosen J, Barsoum MW (2016) X-ray photoelectron spectroscopy of select multi-layered transition metal carbides. Appl Surf Sci 362:406–417

    Article  CAS  Google Scholar 

  28. Zhu X, Liu B, Hou H, Huang Z, Zeinu KM, Huang L, Yuan X, Guo D, Hu J, Yang J (2017) Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II) and Hg(II). Electrochim Acta 248:46–57

    Article  CAS  Google Scholar 

  29. Satheeshkumar E, Makaryan T, Melikyan A, Minassian H, Gogotsi Y, Yoshimura M (2016) One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS. Sci Rep 6(32049)

  30. Wang MQ, Ye C, Bao SJ, Xu MW (2017) Controlled synthesis of Mn3(PO4)2 hollow spheres as biomimetic enzymes for selective detection of superoxide anions released by living cells. Microchim Acta 184:1177–1184

    Article  CAS  Google Scholar 

  31. Batchelor-McAuley C, Yang M, Hall EM, Compton RG (2015) Correction factors for the analysis of voltammetric peak currents measured using staircase voltammetry. J Electroanal Chem 758:1–6

    Article  CAS  Google Scholar 

  32. Cai X, Shi L, Sun W, Zhao H, Li H, He H, Lan M (2018) A facile way to fabricate manganese phosphate self-assembled carbon networks as efficient electrochemical catalysts for real-time monitoring of superoxide anions released from HepG2 cells. Biosens Bioelectron 102:171–178

    Article  CAS  Google Scholar 

  33. Dashtestani F, Ghourchian H, Eskandari K (2015) A superoxide dismutase mimic nanocomposite for amperometric sensing of superoxide anions. Microchim Acta 182:1045–1053

    Article  CAS  Google Scholar 

  34. Madhurantakam S, Selvaraj S, Nesakumar N (2014) Electrochemical enzymeless detection of superoxide employing naringin–copper decorated electrodes. Biosens Bioelectron 59:134–139

    Article  CAS  Google Scholar 

  35. Santhosh P, Manesh KM, Lee SH (2011) Sensitive electrochemical detection of superoxide anion using gold nanoparticles distributed poly(methyl methacrylate)–polyaniline core–shell electrospun composite electrode. Analyst 136:1557–1561

    Article  CAS  Google Scholar 

  36. Chen XJ, West AC, Cropek DM, Banta S (2008) Detection of the superoxide radical anion using various Alkanethiol monolayers and immobilized cytochrome c. Anal Chem 80:9622–9629

    Article  CAS  Google Scholar 

  37. Sadeghian RB, Ostrovidov S, Han J, Salehi S, Bahraminejad B, Bae H, Chen M, Khademhosseini A (2016) Online monitoring of superoxide anions released from skeletal muscle cells using an electrochemical biosensor based on thick-film Nanoporous gold. ACS sensors 1:921–928

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge to the financial support by the China Postdoctoral Science Foundation (2016 M602627), National Natural Science Foundation of China (21505108), Chongqing Postdoctoral Science Special Foundation (Xm2016032), Transformative Project for Excellent Scientific and Technological Achievements in University (KJZH17108), Special Program for Chongqing Social Business and People’s Livelihood Guarantee of Science and Technology (cstc2017shmsA30001) and Science Foundation for Youths of Science and Technology Department of Shaanxi Province (2016JQ2026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Wang or Jiucun Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 3003 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Wang, B., Jin, Y. et al. Nanostructured MXene-based biomimetic enzymes for amperometric detection of superoxide anions from HepG2 cells. Microchim Acta 186, 95 (2019). https://doi.org/10.1007/s00604-018-3220-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3220-9

Keywords

Navigation