Skip to main content
Log in

Ultrafast preparation of a polyhedral oligomeric silsesquioxane-based ionic liquid hybrid monolith via photoinitiated polymerization, and its application to capillary electrochromatography of aromatic compounds

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An ionic liquid hybrid monolithic capillary column was prepared within 7 min via photoinitiated free-radical polymerization of an ionic liquid monomer (1-butyl-3-vinylimidazolium-bis[(trifluoromethyl)sulfonyl]imide); VBIMNTF2) and a methacryl substituted polyhedral oligomeric silsesquioxane (POSS-MA) acting as a cross-linker. The effects of composition of prepolymerization solution and initiation time on the porous structure and electroosmotic flow (EOF) of monolithic column were investigated. The hybrid monolith was characterized by scanning electron microscopy and FTIR. Owing to the introduction of a rigid nanosized POSS silica core and ionic liquids with multiple interaction sites, the monolithic column has a well-defined 3D skeleton morphology, good mechanical stability, and a stable anodic electroosmotic flow. The hybrid monolithic stationary phase was applied to the capillary electrochromatographic separation of various alkylbenzenes, phenols, anilines and polycyclic aromatic hydrocarbons (PAHs). The column efficiency is highest (98,000 plates/m) in case of alkylbenzenes. Mixed-mode retention mechanisms including hydrophobic interactions, π-π stacking, electrostatic interaction and electrophoretic mobility can be observed. This indicates the potential of this material in terms of efficient separation of analytes of different structural type.

Preparation of a mixed-mode ionic liquid hybrid monolithic column via photoinitiated polymerization of methacryl substituted polyhedral oligomeric silsesquioxane (POSS-MA) and 1-butyl-3-vinylimidazolium-bis[(trifluoromethyl)sulfonyl]imide (VBIMNTF2) ionic liquid for use in capillary electrochromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hilder EF, Svec F, Fréchet JM (2004) Development and application of polymeric monolithic stationary phases for capillary electrochromatography. J Chromatogr A 1044:3–22. https://doi.org/10.1016/j.chroma.2004.04.057

    Article  CAS  PubMed  Google Scholar 

  2. Svec F (2009) My favorite materials: porous polymer monoliths. J Sep Sci 32:3–9. https://doi.org/10.1002/jssc.2008.00.530

    Article  CAS  PubMed  Google Scholar 

  3. Nischang I, Causon TJ (2016) Porous polymer monoliths: from their fundamental structure to analytical engineering applications. Trends Anal Chem 75:108–117. https://doi.org/10.1016/j.trac.2015.05.013

    Article  CAS  Google Scholar 

  4. Jandera P (2013) Advances in the development of organic polymer monolithic columns and their applications in food analysis—a review. J Chromatogr A 1313:37–53. https://doi.org/10.1016/j.chroma.2013.08.010

    Article  CAS  PubMed  Google Scholar 

  5. Liu Z, Ou J, Zou H (2016) Click polymerization for preparation of monolithic columns for liquid chromatography. Trends Anal Chem 82:89–99. https://doi.org/10.1016/j.trac.2016.05.016

    Article  CAS  Google Scholar 

  6. Svec F, Lv Y (2015) Advances and recent trends in the field of monolithic columns for chromatography. Anal Chem 87:250–273. https://doi.org/10.1021/ac504059c

    Article  CAS  PubMed  Google Scholar 

  7. Hayes JD, Malik A (2000) Sol−gel monolithic columns with reversed electroosmotic flow for capillary electrochromatography. Anal Chem 72:4090–4099. https://doi.org/10.1021/ac000120p

    Article  CAS  PubMed  Google Scholar 

  8. Zhang T, Ma C, Wu M, Ye Y, Chen H, Huang J (2013) Selective microextraction of carbaryl and naproxen using organic–inorganic monolithic columns containing a double molecular imprint. Microchim Acta 180:695–702. https://doi.org/10.1007/s00604-013-0990-y

    Article  CAS  Google Scholar 

  9. Fang G, Qian H, Deng Q, Ran X, Yang Y, Liu C, Wang S (2014) A novel C18 reversed phase organic–silica hybrid cationic monolithic capillary column with an ionic liquid as an organic monomer via a “one-pot” approach for capillary electrochromatography. RSC Adv 4:15518–15525. https://doi.org/10.1039/C4RA00997E

    Article  CAS  Google Scholar 

  10. Ou J, Liu Z, Wang H, Lin H, Dong J, Zou H (2015) Recent development of hybrid organic-silica monolithic columns in CEC and capillary LC. Electrophoresis 36:62–75. https://doi.org/10.1002/elps.201400316

    Article  CAS  PubMed  Google Scholar 

  11. Wu M, Wu R, Wang F, Ren L, Dong J, Liu Z, Zou H (2009) “One-pot” process for fabrication of organic-silica hybrid monolithic capillary columns using organic monomer and alkoxysilane. Anal Chem 81:3529–3536. https://doi.org/10.1021/ac9000749

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Chen Y, Yang H, Nie L, Yao S (2013) Cage-like silica nanoparticles-functionalized silica hybrid monolith for high performance capillary electrochromatography via “one-pot” process. J Chromatogr A 1283:132–139. https://doi.org/10.1016/j.chroma.2013.01.112

    Article  CAS  PubMed  Google Scholar 

  13. Zhang H, Ou J, Liu Z, Wang H, Wei Y, Zou H (2015) Preparation of hybrid monolithic columns via “one-pot” photoinitiated thiol–acrylate polymerization for retention-independent performance in capillary liquid chromatography. Anal Chem 87:8789–8797. https://doi.org/10.1021/acs.analchem.5b01707

    Article  CAS  PubMed  Google Scholar 

  14. Zhang W, Müller AH (2013) Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog Polym Sci 38:1121–1162. https://doi.org/10.1016/j.progpolymsci.2013.03.002

    Article  CAS  Google Scholar 

  15. Shen S, Ye F, Zhang C, Xiong Y, Su L, Zhao S (2015) Preparation of polyhedral oligomeric silsesquioxane based hybrid monoliths by thiol-ene click chemistry for capillary liquid chromatography. Analyst 140:265–271. https://doi.org/10.1039/C4AN01668H

    Article  CAS  PubMed  Google Scholar 

  16. Zhang H, Ou J, Wei Y, Wang H, Liu Z, Zou H (2016) A hybrid fluorous monolithic capillary column with integrated nanoelectrospray ionization emitter for determination of perfluoroalkyl acids by nano-liquid chromatography–nanoelectrospray ionization-mass spectrometry/mass spectrometry. J Chromatogr A 1440:66–73. https://doi.org/10.1016/j.chroma.2016.02.025

    Article  CAS  PubMed  Google Scholar 

  17. Ou J, Zhang H, Lin H, Dong J, Zou H (2013) Polyhedral oligomeric silsesquioxanes as functional monomer to prepare hybrid monolithic columns for capillary electrochromatography and capillary liquid chromatography. Anal Chim Acta 761:209–216. https://doi.org/10.1016/j.aca.2012.11.052

    Article  CAS  PubMed  Google Scholar 

  18. Liu Z, Ou J, Lin H, Wang H, Dong J, Zou H (2014) Preparation of polyhedral oligomeric silsesquioxane-based hybrid monolith by ring-opening polymerization and post-functionalization via thiol-ene click reaction. J Chromatogr A 1342:70–77. https://doi.org/10.1016/j.chroma.2014.03.058

    Article  CAS  PubMed  Google Scholar 

  19. Qiao X, Chen R, Yan H, Shen S (2017) Polyhedral oligomeric silsesquioxane-based hybrid monolithic columns: recent advances in their preparation and their applications in capillary liquid chromatography. Trends Anal Chem 97:50–64. https://doi.org/10.1016/j.trac.2017.08.006

    Article  CAS  Google Scholar 

  20. Lin X, Wang X, Zhao T, Zheng Y, Liu S, Xie Z (2012) Electroneutral silica-based hybrid monolith for hydrophilic interaction capillary electrochromatography. J Chromatogr A 1260:174–182. https://doi.org/10.1016/j.chroma.2012.08.053

    Article  CAS  PubMed  Google Scholar 

  21. Soares B, Passos H, Freire CS, Coutinho JA, Silvestre AJ, Freire MG (2016) Ionic liquids in chromatographic and electrophoretic techniques: toward additional improvements in the separation of natural compounds. Green Chem 18:4582–4604. https://doi.org/10.1039/C6GC01778A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun P, Armstrong DW (2010) Ionic liquids in analytical chemistry. Anal Chim Acta 661:1–16. https://doi.org/10.1016/j.aca.2009.12.007

    Article  CAS  PubMed  Google Scholar 

  23. Tang S, Liu S, Guo Y, Liu X, Jiang S (2014) Recent advances of ionic liquids and polymeric ionic liquids in capillary electrophoresis and capillary electrochromatography. J Chromatogr A 1357:147–157. https://doi.org/10.1016/j.chroma.2014.04.037

    Article  CAS  PubMed  Google Scholar 

  24. Lin X, Zheng N, Wang J, Wang X, Zheng Y, Xie Z (2013) Polyhedral oligomeric silsesquioxane (POSS)-based multifunctional organic–silica hybrid monoliths. Analyst 138:5555–5558. https://doi.org/10.1039/C3AN01243C

    Article  CAS  PubMed  Google Scholar 

  25. Shan Y, Qiao L, Shi X, Xu G (2015) Preparation and evaluation of a novel hybrid monolithic column based on pentafluorobenzyl imidazolium bromide ionic liquid. J Chromatogr A 1375:101–109. https://doi.org/10.1016/j.chroma.2014.11.084

    Article  CAS  PubMed  Google Scholar 

  26. Zhang N, Zhang L, Qiao X, Wang Y, Yan H, Bai L (2015) Facile one-pot preparation of an imidazolium embedded C8 hybrid monolith using polyhedral oligomeric silsesquioxane for capillary liquid chromatography. RSC Adv 5:91436–91440. https://doi.org/10.1039/C5RA15823K

    Article  CAS  Google Scholar 

  27. Qiao X, Zhang N, Han M, Li X, Qin X, Shen S (2017) Periodic imidazolium-bridged hybrid monolith for high-efficiency capillary liquid chromatography with enhanced selectivity. J Sep Sci 40:1024–1031. https://doi.org/10.1002/jssc.201601014

    Article  CAS  PubMed  Google Scholar 

  28. Walsh Z, Levkin PA, Abele S, Scarmagnani S, Heger D, Klán P, Diamond D, Paull B, Svec F, Macka M (2011) Polymerisation and surface modification of methacrylate monoliths in polyimide channels and polyimide coated capillaries using 660 nm light emitting diodes. J Chromatogr A 1218:2954–2962. https://doi.org/10.1016/j.chroma.2011.03.021

    Article  CAS  PubMed  Google Scholar 

  29. Weller A, Carrasco-Correa EJ, Belenguer-Sapiña C, Mauri-Aucejo AR, Amorós P, Herrero-Martínez JM (2017) Organo-silica hybrid capillary monolithic column with mesoporous silica particles for separation of small aromatic molecules. Microchim Acta 184:3799–3808. https://doi.org/10.1007/s00604-017-2404-z

    Article  CAS  Google Scholar 

  30. Wang H, Ou J, Liu Z, Lin H, Peng X, Zou H (2015) Chromatographic efficiency comparison of polyhedral oligomeric silsesquioxanes-containing hybrid monoliths via photo- and thermally-initiated free-radical polymerization in capillary liquid chromatography for small molecules. J Chromatogr A 1410:110–117. https://doi.org/10.1016/j.chroma.2015.07.085

    Article  CAS  PubMed  Google Scholar 

  31. Stanelle RD, Sander LC, Marcus RK (2005) Hydrodynamic flow in capillary-channel fiber columns for liquid chromatography. J Chromatogr A 1100:68–75. https://doi.org/10.1016/j.chroma.2005.09.014

    Article  CAS  PubMed  Google Scholar 

  32. Lee D, Svec F, Fréchet JM (2004) Photopolymerized monolithic capillary columns for rapid micro high-performance liquid chromatographic separation of proteins. J Chromatogr A 1051(1–2):53–60. https://doi.org/10.1016/j.chroma.2004.04.047

    Article  CAS  PubMed  Google Scholar 

  33. Karout A, Pierre AC (2009) Silica gelation catalysis by ionic liquids. Catal Commun 10:359–361. https://doi.org/10.1016/j.catcom.2008.07.046

    Article  CAS  Google Scholar 

  34. Liu C, Deng Q, Fang G, Liu H, Wu J, Pan M, Wang S (2013) Ionic liquids monolithic columns for protein separation in capillary electrochromatography. Anal Chim Acta 804:313–320. https://doi.org/10.1016/j.aca.2013.10.037

    Article  CAS  PubMed  Google Scholar 

  35. Shi X, Qiao L, Xu G (2015) Recent development of ionic liquid stationary phases for liquid chromatography. J Chromatogr A 1420:1–15. https://doi.org/10.1016/j.chroma.2015.09.090

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (21375019), Special-funded Program on National Key Scientific Instruments and Equipment Development of China (2011YQ150072), and the Program for Changjiang Scholars and Innovative Research Team in University of China (IRT15R11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Wu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Lei, X., Deng, L. et al. Ultrafast preparation of a polyhedral oligomeric silsesquioxane-based ionic liquid hybrid monolith via photoinitiated polymerization, and its application to capillary electrochromatography of aromatic compounds. Microchim Acta 185, 318 (2018). https://doi.org/10.1007/s00604-018-2847-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2847-x

Keywords

Navigation