Skip to main content
Log in

Impedimetric detection of bacteria by using a microfluidic chip and silver nanoparticle based signal enhancement

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a method that can significantly improve the performance of impedimetric detection of bacteria. A multifunctional microfluidic chip was designed consisting of interdigitated microelectrodes and a micro-mixing zone with a Tesla structure. This maximizes the coating of bacterial surfaces with nanoparticles and results in improved impedimetric detection. The method was applied to the detection of Escherichia coli O157:H7 (E. coli). Silver enhancement was accomplished by coating E.coli with the cationic polymer diallyldimethylammonium chloride (PDDA) to form positively charged E. coli/PDDA complexes. Then, gold nanoparticles (AuNPs) were added, and the resulting E. coli/PDDA/AuNPs complexes were collected at interdigitated electrodes via positive dielectrophoresis (pDEP). A silver adduct was then formed on the E. coli/PDDA/AuNP complexes by using silver enhancement solutions and by using the AuNPs as catalysts. The combination of pDEP based capture and of using silver adducts reduces impedance by increasing the conductivity of the solution and the double layer capacitance around the microelectrodes. Impedance decreases linearly in the 2 × 103–2 × 105 cfu·mL−1 E. coli concentration range, with a 500 cfu·mL−1 detection limit. Egg shell wash samples and tap water spiked with E. coli were successfully used for validation, and this demonstrates the practical application of this method.

Schematic representation of the AuNP@Ag enhancement method integrated with multifunctional microfluidic chip platform for impedimetric quantitation of bacteria. The method significantly improves the performance of impedimetric detection of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fabai WCD (2016) Nanofabricated structures and microfluidic devices for bacteria: from techniques to biology. Chem Soc Rev 45:268–280. https://doi.org/10.1039/C5CS00514K

    Article  Google Scholar 

  2. Song Y, Zhang H, Chon CH, Chen S, Pan X, Li D (2010) Counting bacteria on a microfluidic chip. Anal Chim Acta 681(1–2):82–86. https://doi.org/10.1016/j.aca.2010.09.035

    Article  CAS  Google Scholar 

  3. Fronczek CF, You DJ, Yoon JY (2013) Single-pipetting microfluidic assay device for rapid detection of Salmonella from poultry package. Biosens Bioelectron 40(1):342–349. https://doi.org/10.1016/j.bios.2012.07.076

    Article  CAS  Google Scholar 

  4. Varshney M, Li Y, Srinivasan B, Tung S (2007) A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples. Sensors Actuators B Chem 128(1):99–107. https://doi.org/10.1016/j.snb.2007.03.045

    Article  CAS  Google Scholar 

  5. Varshney M, Li Y (2007) Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosens Bioelectron 22(11):2408–2414. https://doi.org/10.1016/j.bios.2006.08.030

    Article  CAS  Google Scholar 

  6. Donato SS, Chu V, Prazeres DM, Conde JP (2013) Metabolic viability of Escherichia coli trapped by dielectrophoresis in microfluidics. Electrophoresis 34(4):575–582. https://doi.org/10.1002/elps.201200292

    Article  CAS  Google Scholar 

  7. Yang L (2012) A Review of Multifunctions of Dielectrophoresis in Biosensors and Biochips for Bacteria Detection. Anal Lett 45(2–3):187–201. https://doi.org/10.1080/00032719.2011.633182

    Article  CAS  Google Scholar 

  8. Yang L, Banada PP, Chatni MR, Seop Lim K, Bhunia AK, Ladisch M, Bashir R (2006) A multifunctional micro-fluidic system for dielectrophoretic concentration coupled with immuno-capture of low numbers of Listeria monocytogenes. Lab Chip 6(7):896–905. https://doi.org/10.1039/b607061m

    Article  CAS  Google Scholar 

  9. Yang L (2009) Dielectrophoresis assisted immuno-capture and detection of foodborne pathogenic bacteria in biochips. Talanta 80(2):551–558. https://doi.org/10.1016/j.talanta.2009.07.024

    Article  CAS  Google Scholar 

  10. He X, Hu C, Guo Q, Wang K, Li Y, Shangguan J (2013) Rapid and ultrasensitive Salmonella Typhimurium quantification using positive dielectrophoresis driven on-line enrichment and fluorescent nanoparticleslabel. Biosens Bioelectron 42:460–466. https://doi.org/10.1016/j.bios.2012.11.020

    Article  CAS  Google Scholar 

  11. Suehiro J, Shutou M, Hatano T, Hara M (2003) High sensitive detection of biological cells using dielectrophoretic impedance measurement method combined with electropermeabilization. Sensors Actuators B Chem 96(1–2):144–151. https://doi.org/10.1016/s0925-4005(03)00517-3

    Article  CAS  Google Scholar 

  12. Yang L (2008) Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes. Talanta 74(5):1621–1629. https://doi.org/10.1016/j.talanta.2007.10.018

    Article  CAS  Google Scholar 

  13. Suehiro J, Ohtsubo A, Hatano T, Hara M (2006) Selective detection of bacteria by a dielectrophoretic impedance measurement method using an antibody-immobilized electrode chip. Sensors Actuators B Chem 119(1):319–326. https://doi.org/10.1016/j.snb.2005.12.027

    Article  CAS  Google Scholar 

  14. Kim S, Yu G, Kim T, Shin K, Yoon J (2012) Rapid bacterial detection with an interdigitated array electrode by electrochemical impedance spectroscopy. Electrochim Acta 82:126–131. https://doi.org/10.1016/j.electacta.2012.05.131

    Article  Google Scholar 

  15. Wang R, Ni Y, Xu Y, Jiang Y, Dong C, Chuan N (2015) Immuno-capture and in situ detection of Salmonella typhimurium on a novel microfluidic chip. Anal Chim Acta 853:710–717. https://doi.org/10.1016/j.aca.2014.10.042

    Article  CAS  Google Scholar 

  16. Chen ZP, Peng ZF, Luo Y, Qu B, Jiang JH, Zhang XB, Shen GL, Yu RQ (2007) Successively amplified electrochemical immunoassay based on biocatalytic deposition of silver nanoparticles and silver enhancement. Biosens Bioelectron 23(4):485–491. https://doi.org/10.1016/j.bios.2007.06.005

    Article  CAS  Google Scholar 

  17. Chen X, Zhang L (2017) A review on micromixers actuated with magnetic nanomaterials. Microchim Acta 184(10):3639–3649. https://doi.org/10.1007/s00604-017-2462-2

    Article  CAS  Google Scholar 

  18. K-L S, Huang H-H, Chang TC, Lin H-P, Lin Y-C, Chen W-T (2008) An immunoassay using an electro-microchip, nanogold probe and silver enhancement. Microfluid Nanofluid 6(1):93–98. https://doi.org/10.1007/s10404-008-0299-z

    Google Scholar 

  19. Yeh CH, Chang YH, Chang TC, Lin HP, Lin YC (2010) Electro-microchip DNA-biosensor for bacteria detection. Analyst 135(10):2717–2722. https://doi.org/10.1039/c0an00186d

    Article  CAS  Google Scholar 

  20. Yeh C-H, Chen W-T, Lin H-P, Chang T-C, Lin Y-C (2009) Development of an immunoassay based on impedance measurements utilizing an antibody–nanosilver probe, silver enhancement, and electro-microchip. Sensors Actuators B Chem 139(2):387–393. https://doi.org/10.1016/j.snb.2009.03.029

    Article  CAS  Google Scholar 

  21. Yeh CH, Huang HH, Chang TC, Lin HP, Lin YC (2009) Using an electro-microchip, a nanogold probe, and silver enhancement in an immunoassay. Biosens Bioelectron 24(6):1661–1666. https://doi.org/10.1016/j.bios.2008.08.039

    Article  CAS  Google Scholar 

  22. Lin L, Liu Y, Tang L, Li J (2011) Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy. Analyst 136(22):4732–4737. https://doi.org/10.1039/c1an15610a

    Article  CAS  Google Scholar 

  23. Sabhachandani P, Sarkar S, Zucchi PC, Whitfield BA, Kirby JE, Hirsch EB, Konry T (2017) Integrated microfluidic platform for rapid antimicrobial susceptibility testing and bacterial growth analysis using bead-based biosensor via fluorescence imaging. Microchim Acta 184(12):4619–4628. https://doi.org/10.1007/s00604-017-2492-9

    Article  CAS  Google Scholar 

  24. Jang H, Lee P, Kim S, Kim SM, Jeon T-J (2017) An antibacterial microfluidic system with fish gill structure for the detection of Staphylococcus via enzymatic reaction on a chromatic polydiacetylene material caused by lysostaphin. Microchim Acta 184(11):4563–4569. https://doi.org/10.1007/s00604-017-2517-4

    Article  CAS  Google Scholar 

  25. Hong CC, Choi JW, Ahn CH (2004) A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab Chip 4(2):109–113. https://doi.org/10.1039/b305892a

    Article  CAS  Google Scholar 

  26. Ravindranath SP, Wang Y, Irudayaraj J (2011) SERS driven cross-platform based multiplex pathogen detection. Sensors Actuators B Chem 152:183–190. https://doi.org/10.1016/j.snb.2010.12.005

    Article  CAS  Google Scholar 

  27. Cho Il-Hoon, Radadia AD, Farrokhzad K, Ximenes E, Euiwon B, Singh AK, Oliver H, Ladisch M, Bhunia A, Applegate B, Mauer L, Bashir R, Irudayaraj J (2014) Nano/Micro and Spectroscopic Approaches to Food Pathogen Detection. Annu Rev Anal Chem 7:65–88. https://doi.org/10.1146/annurev-anchem-071213-020249

  28. Dickson JS, Koohmarare M (1989) Cell Surface Charge Characteristics and Their Relationship to Bacterial Attachment to Meat Surfaces. Appl Environ Microbiol 55(4):5

    Google Scholar 

  29. Wilson WW, Wade MM, Holman SC, Champlin FR (2001) Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J Microbiol Methods 43(3):153–164. https://doi.org/10.1016/s0167-7012(00)00224-4

    Article  CAS  Google Scholar 

  30. Lackie PM (1996) Immunogold silver staining for light microscopy. Histochem Cell Biol 106:9–17

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Zhongwu Zhou and PabloVega for their critical reading of the manuscript. The work was financially supported by National Natural Science Foundation of China (No 21375156); National High Technology Research and Development Program of China (Ministry of Science and Technology 863 Plan) (No 2015AA021104); Frontier Research Key Projects of Chongqing Science and Technology Committee, [cstc2015jcyjBX0010]; Scientific and Technical Innovation Projects for People’s Livelihood of Chongqing Science and Technology Committee, [cstc2015shms,zx00014]; Benefit Projects for People’s Livelihood by Science and Technology, Chongqing Science and Technology Committee 【cstc2015jcsf8001】,2015.07-2017.07; Fundamental Research Funds for the Central Universities (Fund for Brain Science), (No.10611CDJXZ238826) Partial support from the Center for Food Safety Engineering, Agricultural Research Service, under Agreement No. 1935-42000-049-00D at Purdue University is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Xu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 817 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Xu, Y., Sors, T. et al. Impedimetric detection of bacteria by using a microfluidic chip and silver nanoparticle based signal enhancement. Microchim Acta 185, 184 (2018). https://doi.org/10.1007/s00604-017-2645-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2645-x

Keywords

Navigation