Skip to main content
Log in

Waxberry-like magnetic porous carbon composites prepared from a nickel-organic framework for solid-phase extraction of fluoroquinolones

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A unique waxberry-like magnetic hierarchical porous carbon hybrid was synthesized from a nickel based metal–organic framework (Ni-MOF) which, on calcination, produces hierarchical Ni/NiO nanocrystals covered with graphitic carbon (GrC). The material was applied to magnetic solid phase extraction (MSPE) of trace levels of four fluoroquinolones (FQs) from environmental water samples. It is shown to exhibit superior extraction capability for four FQs, because the novel 3D morphology provides an enhanced surface area along with transport channels, while Ni and graphitic carbon as potential adsorption sites are ideal components. The material with inherent magnetism is reusable and displays superb recycling stability for the adsorption and desorption (by using alkaline methanol) of FQs after 6 cycles. The FQs were quantified by HPLC with UV detection, and the limits of detection (at an S/N ratio of 3) range between 7.9 and 57 ng·L−1. Recoveries from spiked environmental water samples are between 88.8 and 103.7%.

A magnetic hierarchical porous carbon hybrid was prepared from a nickel-organic framework and applied to solid phase extraction of trace levels fluoroquinolones from environmental water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marouzi S, Sharifi Rad A, Beigoli S, Teimoori Baghaee P, Assaran Darban R, Chamani J (2017) Study on effect of lomefloxacin on human holo-transferrin in the presence of essential and nonessential amino acids: Spectroscopic and molecular modeling approaches. Int J Biol Macromol 97:688–699. doi:10.1016/j.ijbiomac.2017.01.047

    Article  CAS  Google Scholar 

  2. Kamble R, Sharma S, Mehta P (2017) Norfloxacin mixed solvency based solid dispersions: In-vitro and In-vivo investigation. J Taibah Univ Sci. doi:10.1016/j.jtusci.2016.11.003

  3. Jiang WT, Chang PH, Wang YS, Tsai Y, Jean JS, Li Z, Krukowski K (2013) Removal of ciprofloxacin from water by birnessite. J Hazard Mater 250:362–369. doi:10.1016/j.jhazmat.2013.02.015

    Article  Google Scholar 

  4. Ahn Y, Linder SW, Veach BT, Steve Yan S, Haydee Fernandez A, Pineiro SA, Cerniglia CE (2012) In vitro enrofloxacin binding in human fecal slurries. Regul Toxicol Pharmacol: RTP 62(1):74–84. doi:10.1016/j.yrtph.2011.11.013

    Article  CAS  Google Scholar 

  5. Fengxian C, Reti H (2017) Analysis of positions and substituents on genotoxicity of fluoroquinolones with quantitative structure-activity relationship and 3D Pharmacophore model. Ecotoxicol Environ Saf 136:111–118. doi:10.1016/j.ecoenv.2016.10.036

    Article  Google Scholar 

  6. Liu X, Liu Y, Xu J-R, Ren K-J, Meng X-Z (2016) Tracking aquaculture-derived fluoroquinolones in a mangrove wetland, South China. Environ Pollut 219:916–923. doi:10.1016/j.envpol.2016.09.011

    Article  CAS  Google Scholar 

  7. Golet EM, Alder AC, Hartmann A, Ternes TA, Giger W (2001) Trace determination of fluoroquinolone antibacterial agents in urban wastewater by solid-phase extraction and liquid chromatography with fluorescence detection. Anal Chem 73(15):3632–3638. doi:10.1021/ac0015265

    Article  CAS  Google Scholar 

  8. Poliwoda A, Krzyzak M, Wieczorek PP (2010) Supported liquid membrane extraction with single hollow fiber for the analysis of fluoroquinolones from environmental surface water samples. J Chromatogr A 1217(22):3590–3597. doi:10.1016/j.chroma.2010.03.051

    Article  CAS  Google Scholar 

  9. Sun X, He J, Cai G, Lin A, Zheng W, Liu X, Chen L, He X, Zhang Y (2010) Room temperature ionic liquid-mediated molecularly imprinted polymer monolith for the selective recognition of quinolones in pork samples. J Sep Sci 33:3786–3793. doi:10.1002/jssc.201000337

    Article  CAS  Google Scholar 

  10. Marazuela MD, Bogialli S (2009) A review of novel strategies of sample preparation for the determination of antibacterial residues in foodstuffs using liquid chromatography-based analytical methods. Anal Chim Acta 645(1–2):5–17. doi:10.1016/j.aca.2009.04.031

    Article  CAS  Google Scholar 

  11. Nasiri J, Naghavi MR, Motamedi E, Alizadeh H, Moghadam MRF, Nabizadeh M, Mashouf A (2017) Carbonaceous sorbents alongside an optimized magnetic solid phase extraction (MSPE) towards enrichment of crude Paclitaxel extracts from callus cultures of Taxus baccata. J Chromatogr B 1043:96–106. doi:10.1016/j.jchromb.2016.10.029

    Article  CAS  Google Scholar 

  12. Fan S, Zhu J, Ren L, Wang M, Bi W, Li H, Huang X, Chen DD (2017) Co-solvent enhanced adsorption with magnetic velvet-like carbon nitride for high efficiency solid phase extraction. Anal Chim Acta 960:63–71. doi:10.1016/j.aca.2017.01.020

    Article  CAS  Google Scholar 

  13. Hekmatara H, Seifi M, Forooraghi K (2013) Microwave absorption property of aligned MWCNT/Fe3O4. J Magn Magn Mater 346:186–191. doi:10.1016/j.jmmm.2013.06.032

    Article  CAS  Google Scholar 

  14. Ma J, Jiang L, Wu G, Xia Y, Lu W, Li J, Chen L (2016) Determination of six sulfonylurea herbicides in environmental water samples by magnetic solid-phase extraction using multi-walled carbon nanotubes as adsorbents coupled with high-performance liquid chromatography. J Chromatogr A 1466:12–20. doi:10.1016/j.chroma

    Article  CAS  Google Scholar 

  15. Cao J, Zhang X, He X, Chen L, Zhang Y (2013) Facile synthesis of a Ni(II)-immobilized core–shell magnetic nanocomposite as an efficient affinity adsorbent for the depletion of abundant proteins from bovine blood. J Mater Chem B 1:3619–3718. doi:10.1039/c3tb20573h

    Article  Google Scholar 

  16. Zhang Y, Zhang M, Yang J, Ding L, Zheng J, Xu J, Xiong S (2016) Formation of Fe3O4@SiO2@C/Ni hybrids with enhanced catalytic activity and histidine-rich protein separation. Nanoscale 8:15978–15988. doi:10.1039/C6NR05078F

  17. Tang B, Song W-C, Yang E-C, Zhao X-J (2017) MOF-derived Ni-based nanocomposites as robust catalysts for chemoselective hydrogenation of functionalized nitro compounds. RSC Adv 7(3):1531–1539. doi:10.1039/c6ra26699a

    Article  CAS  Google Scholar 

  18. Xu X, Nosheen F, Wang X (2016) Ni-decorated molybdenum carbide hollow structure derived from carbon-coated metal–organic framework for electrocatalytic hydrogen evolution reaction. Chem Mater 28(17):6313–6320. doi:10.1021/acs.chemmater.6b02586

    Article  CAS  Google Scholar 

  19. Ma J, Yao Z, Hou L, Lu W, Yang Q, Li J, Chen L (2016) Metal organic frameworks (MOFs) for magnetic solid-phase extraction of pyrazole/pyrrole pesticides in environmental water samples followed by HPLC-DAD determination. Talanta 161:686–692. doi:10.1016/j.talanta.2016.09.035

    Article  CAS  Google Scholar 

  20. Zhou Q, Lei M, Li J, Liu Y, Zhao K, Zhao D (2017) Magnetic solid phase extraction of N- and S-containing polycyclic aromatic hydrocarbons at ppb levels by using a zerovalent ironnanoscale material modified with a metal organic framework of type Fe@MOF-5, and their determination by HPLC. Microchim Acta 184:1029–1036. doi:10.1007/s00604-017-2094-6

    Article  CAS  Google Scholar 

  21. Chen X, Ding N, Zang H, Yeung H, Zhao R-S, Cheng C, Liu J, Chan TWD (2013) Fe3O4@MOF core–shell magnetic microspheres for magnetic solid-phase extraction of polychlorinated biphenyls from environmental water samples. J Chromatogr A 1304:241–245. doi:10.1016/j.chroma.2013.06.053

    Article  CAS  Google Scholar 

  22. Wu Q, Cheng S, Wang C, Li X, Li Z, Hao C (2016) Magnetic porous carbon derived from a zinc-cobaltmetal-organic framework: a adsorbent for magnetic solid phase extraction of flunitrazepam. Microchim Acta 183:3009–3017. doi:10.1007/s00604-016-1948-7

    Article  CAS  Google Scholar 

  23. Zou F, Chen YM, Liu K, Yu Z, Liang W, Bhaway SM, Gao M, Zhu Y (2016) Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 10(1):377–386. doi:10.1021/acsnano.5b05041

    Article  CAS  Google Scholar 

  24. Carrasco JA, Romero J, Abellan G, Hernandez-Saz J, Molina SI, Marti-Gastaldo C, Coronado E (2016) Small-pore driven high capacitance in a hierarchical carbon via carbonization of Ni-MOF-74 at low temperatures. Chem Commun 52(58):9141–9144. doi:10.1039/c6cc02252a

    Article  CAS  Google Scholar 

  25. Mukoyoshi M, Kobayashi H, Kusada K, Hayashi M, Yamada T, Maesato M, Taylor JM, Kubota Y, Kato K, Takata M, Yamamoto T, Matsumura S, Kitagawa H (2015) Hybrid materials of Ni NP@MOF prepared by a simple synthetic method. Chem Commun 51(62):12463–12466. doi:10.1039/c5cc04663g

    Article  CAS  Google Scholar 

  26. Lee G, Lee C, Yoon CM, Kim M, Jang J (2017) High-performance three-dimensional mesoporous graphene electrode for supercapacitors using lyophilization and plasma reduction. ACS Appl Mater Interfaces 9(6):5222–5230. doi:10.1021/acsami.6b13050

    Article  CAS  Google Scholar 

  27. Wagil M, Kumirska J, Stolte S, Puckowski A, Maszkowska J, Stepnowski P, Bialk-Bielinska A (2014) Development of sensitive and reliable LC-MS/MS methods for the determination of three fluoroquinolones in water and fish tissue samples and preliminary environmental risk assessment of their presence in two rivers in northern Poland. Sci Total Environ 493:1006–1013. doi:10.1016/j.scitotenv.2014.06.082

    Article  CAS  Google Scholar 

  28. Tang Y, Guo H, Xiao L, Yu S, Gao N, Wang Y (2013) Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids Surf A Physicochem Eng Asp 424:74–80. doi:10.1016/j.colsurfa.2013.02.030

    Article  CAS  Google Scholar 

  29. Zhou Q, Zhu L, Xia X, Tang H (2016) The water – resistant zeolite imidazolate framework 67 is a viable solid phase sorbent for fluoroquinolones while efficiently excluding macromolecules. Microchim Acta 183(6):1839–1846. doi:10.1007/s00604-016-1814-7

    Article  CAS  Google Scholar 

  30. Wu X, Huang M, Zhou T, Mao J (2016) Recognizing removal of norfloxacin by novel magnetic molecular imprinted chitosan/γ-Fe2O3 composites: Selective adsorption mechanisms, practical application and regeneration. Sep Purif Technol 165:92–100. doi:10.1016/j.seppur.20 16.03.04

    Article  CAS  Google Scholar 

  31. Andrea S, Michela S, Federica M, Elettra M, Dhanalakshmi V, Daniele D, Antonella P (2016) Preparation of silica-supported carbon by Kraft lignin pyrolysis, and its use in solid-phase extraction of fluoroquinolone from environmental waters. Microchim Acta 183:2241–2249. doi:10.1007/s00604-016-1859-7

    Article  Google Scholar 

  32. Wang R, Yuan Y, Yang X, Han Y, Yan H (2015) Polymethacrylate microparticles covalently functionalized with an ionic liquid for solid-phase extraction of fluoroquinolone antibiotics. Microchim Acta 182:2201–2208. doi:10.1007/s00604-015-1544-2

    Article  CAS  Google Scholar 

  33. Parirokh L, Noor M, Mohammad R, Khalil A, Seyed M (2017) Colorimetric aptamer based assay for the determination of fluoroquinolones by triggering the reduction-catalyzing activity of gold nanoparticles. Microchim Acta 184:2039–2045. doi:10.1007/s00604-017-2213-4

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Nature Science Foundation of China (NSFC51672116), Science and technology foundation of ocean and fisheries of Liaoning province (201408, 201406), General project of scientific research of the education department of Liaoning province (L2015206), Liaoning scientific instruments service sharing information platform ability construction funds (201507A003), Liaoning provincial department of education innovation team projects (LT2015012) and the foundation of 211 project for innovative talent training, Liaoning university. The authors also thank their colleagues and other students who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 730 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, Y., Zhang, Z. et al. Waxberry-like magnetic porous carbon composites prepared from a nickel-organic framework for solid-phase extraction of fluoroquinolones. Microchim Acta 184, 4107–4115 (2017). https://doi.org/10.1007/s00604-017-2438-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2438-2

Keywords

Navigation