Skip to main content
Log in

The oxidase-like activity of iridium nanoparticles, and their application to colorimetric determination of dissolved oxygen

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Iridium nanoparticles (IrNPs) with intrinsic oxidase-like activity were synthesized by using sodium citrate as the stabilizer and NaBH4 as the reducing agent. The IrNPs have an average diameter of 2.5 ± 0.5 nm and exhibit excellent oxidase-like property. Under the catalytic action of the IrNPs, 3,3′,5,5′-tetramethylbenzidine (TMB) is oxidized by dissolved oxygen (DO) to form a blue product with an absorption maximum at 652 nm. The catalytic activity is ascribed to the production of superoxide anion radical (O2ˉ∙). The chromogenic reaction is exploited for the determination of DO. The method exhibits a wide calibration range from 12.5 to 257.5 μM of DO and a limit of detection as low as 4.7 μM. Compared to other methods, this method presented here shows improved precision and faster response time.

Iridium nanoparticles (IrNPs) stabilized by sodium citrate exhibit oxidase-like activity and can effectively catalyze dissolved oxygen (DO) by oxidizing 3,3′,5,5′-tetramethylbenzidine (TMB) to form a blue product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu Y, Wu HH, Chong Y, Wamer WG, Xia QS, Cai LN, Nie ZH, Fu PP, Yin JJ (2015) Platinum nanoparticles: efficient and stable catechol oxidase mimetics. ACS Appl Mater Interfaces 7:19709–19717

    Article  CAS  Google Scholar 

  2. Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization—aqueous and non-aqueous environment. Process Biochem 43:1019–1032

    Article  CAS  Google Scholar 

  3. Wang LH, Zeng Y, Shen AG, Zhou XD, Hu JM (2015) Three dimensional nano-assemblies of noble metal nanoparticle–infinite coordination polymers as specific oxidase mimetics for degradation of methylene blue without adding any cosubstrate. Chem Commun 51:2052–2055

    Article  CAS  Google Scholar 

  4. Čunderlová V, Hlaváček A, Horňáková V, Peterek M, Němeček D, Hampl A, Eyer L, Skládal P (2016) Catalytic nanocrystalline coordination polymers as an efficient peroxidase mimic for labeling and optical immunoassays. Microchim Acta 183(2):651–658

    Article  Google Scholar 

  5. Nasir M, Nawaz MH, Latif U, Yaqub M, Akhtar H, Rahim A (2017) An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta 184:323–342

    Article  CAS  Google Scholar 

  6. Quan ZW, Wang YX, Fang JY (2013) High-index faceted noble metal nanocrystals. Acc Chem Res 46:191–202

    Article  CAS  Google Scholar 

  7. Periasamy AP, Roy P, Wu WP, Huang YH, Chang HT (2016) Glucose oxidase and horseradish peroxidase like activities of cuprous oxide/polypyrrole composites. Electrochim Acta 215:253–260

    Article  CAS  Google Scholar 

  8. Mévellec V, Roucoux A, Ramirez E, Philippot K, Chaudret B (2004) Surfactant-stabilized aqueous iridium(0) colloidal suspension: an efficient reusable catalyst for hydrogenation of arenes in biphasic media. Adv Synth Catal 346:72–76

    Article  Google Scholar 

  9. Chakrapani K, Sampath S (2014) The morphology dependent electrocatalytic activity of Ir nanostructures towards oxygen reduction. Phys Chem Chem Phys 16:16815–16823

    Article  CAS  Google Scholar 

  10. Su H, Liu DD, Zhao M, Hu WL, Xue SS, Cao Q, Le XY, Ji LN, Mao ZW (2015) Dual-enzyme characteristics of polyvinylpyrrolidone-capped iridium nanoparticles and their cellular protective effect against H2O2-induced oxidative damage. ACS Appl Mater Interfaces 7:8233–8242

    Article  CAS  Google Scholar 

  11. Cui ML, Zhou JD, Zhao Y, Song QJ (2017) Facile synthesis of iridium nanoparticles with superior peroxidase-likeactivity for colorimetric determination of H2O2 and xanthine. Sensors Actuators B Chem 243:203–210

    Article  CAS  Google Scholar 

  12. Martz T, Takeshita Y, Rolph R, Bresnahan P (2012) Tracer monitored titrations: measurement of dissolved oxygen. Anal Chem 84:290–296

    Article  CAS  Google Scholar 

  13. Stetter JR, Li J (2008) Amperometric gas sensors-a review. Chem Rev 108:352–366

    Article  CAS  Google Scholar 

  14. Cui ML, Zhao Y, Wang C, Song QJ (2016) Synthesis of 2.5 nm colloidal iridium nanoparticles with strong surface enhanced Raman scattering activity. Microchim Acta 183:2047–2053

    Article  CAS  Google Scholar 

  15. Purich DL (2010) Enzyme kinetics catalysis and control. Elsevier Inc

  16. Huang XQ, Zhao ZP, Fan JM, Tan YM, Zheng NF (2011) Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J Am Chem Soc 133:4718–4721

    Article  CAS  Google Scholar 

  17. Asati A, Santra S, Kaittanis C, Nath S, Perez JM (2009) Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed 48:2308–2321

    Article  CAS  Google Scholar 

  18. Dong YM, Zhang JJ, Jiang PP, Wang GL, Wu XM, Zhao H, Zhang C (2015) Superior peroxidase mimetic activity of carbon dots–Pt nanocomposites relies on synergistic effects. New J Chem 39:4141–4146

    Article  CAS  Google Scholar 

  19. Luo WJ, Zhu CF, Su S, Li D, He Y, Huang Q, Fan CH (2010) Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 4:7451–7458

    Article  CAS  Google Scholar 

  20. Zhang K, Hu XN, Liu JB, Yin JJ, Hou S, Wen T, He WW, Ji YL, Guo YT, Wang Q, Wu XC (2011) Formation of PdPt alloy Nanodots on gold Nanorods: tuning oxidase-like activities via composition. Langmuir 27:2796–2803

    Article  CAS  Google Scholar 

  21. Kim MI, Shim JM, Li TH, Lee JW, Park HG (2011) Fabrication of nanoporous nanocomposites entrapping Fe3O4 magnetic nanoparticles and oxidases for colorimetric biosensing. Chem Eur J 17:10700–10707

    Article  CAS  Google Scholar 

  22. Shi WB, Wang QL, Long YJ, Cheng ZL, Chen SH, Zheng HZ, Huang YM (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47:6695–6697

    Article  CAS  Google Scholar 

  23. Ohyashiki T, Nunomura M, Katoh T (1999) Detection of superoxide anion radical in phospholipid liposomal membrane by fluorescence quenching method using 1,3-diphenylisobenzofuran. Biochim Biophys Acta 1421:131–139

    Article  CAS  Google Scholar 

  24. Yang WS, Hao JH, Zhang Z, Zhang BL (2015) PB@Co3O4 nanoparticles as both oxidase and peroxidase mimics and their application for colorimetric detection of glutathione. New J Chem 39:8802–8806

    Article  CAS  Google Scholar 

  25. Wu CC, Yasukawa T, Shiku H, Matsue T (2005) Fabrication of miniature Clark oxygen sensor integrated with microstructure. Sensors Actuators B Chem 110:342–349

    Article  CAS  Google Scholar 

  26. Nagl S, Baleizão C, Borisov SM, Schäferling M, Berberan-Santos MN, Wolfbeis OS (2007) Optical sensing and imaging of trace oxygen with record response. Angew Chem Int Ed 46:2317–2319

    Article  CAS  Google Scholar 

  27. Meier RJ, Schreml S, Wang XD, Landthaler M, Babilas P, Wolfbeis OS (2011) Simultaneous photographing of oxygen and pH in vivo using sensor films. Angew Chem Int Ed 50:10893–10896

    Article  CAS  Google Scholar 

  28. Gao Y, Chen T, Yamamoto S, Miyashita T, Mitsuishi M (2015) Superhydrophobic porous surfaces: dissolved oxygen sensing. ACS Appl Mater Interfaces 7:3468–3472

    CAS  Google Scholar 

  29. Chu CS, Chuang CY (2015) Optical fiber sensor for dual sensing of dissolved oxygen and Cu2+ ions based on PdTFPP/CdSe embedded in sol–gel matrix. Sensors Actuators B Chem 209:94–99

    Article  CAS  Google Scholar 

  30. Yoshihara T, Yamaguchi Y, Hosaka M, Takeuchi T, Tobita S (2012) Ratiometric molecular sensor for monitoring oxygen levels in living cells. Angew Chem Int Ed 124:4224–4227

    Article  Google Scholar 

  31. Nichols AJ, Roussakis E, Klein OJ, Evans CL (2014) Click-assembled, oxygen-sensing nanoconjugates for depth-resolved, near-infrared imaging in a 3D cancer model. Angew Chem Int Ed 53:3671–3674

    Article  CAS  Google Scholar 

  32. Chu CS, Lo YL (2011) Highly sensitive and linear calibration optical fiber oxygen sensor based on Pt(II) complex embedded in sol-gel matrix. Sensors Actuators B Chem 155:53–57

    Article  CAS  Google Scholar 

  33. Nagl S, Baleizão C, Borisov SM, Schäferling M, Berberan-Santos MN, Wolfbeis OS (2007) Optical sensing and imaging of trace oxygen with record response. Angew Chem Int Ed 46:2317–2319

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51502115, 21403090), and the Enterprise university-research prospective program Jiangsu Province (BY 2015019-22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qijun Song.

Ethics declarations

We have declared that we have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 14.1 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, M., Zhao, Y., Wang, C. et al. The oxidase-like activity of iridium nanoparticles, and their application to colorimetric determination of dissolved oxygen. Microchim Acta 184, 3113–3119 (2017). https://doi.org/10.1007/s00604-017-2326-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2326-9

Keywords

Navigation