Skip to main content
Log in

Highly Stable and Sensitive Colorimetric Visualization of Trivalent Chromium Using Amido Black 10B-Stabilized Silver Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Here, we report a highly stable and sensitive colorimetric assay for Cr3+ based on amido black 10B-stabilized silver nanoparticles (AgNPs) as the probes. The detection mechanism is that the coordination interaction between Cr3+ and amido black 10B on the surface of AgNPs causes the cross-linking/aggregation of amido black-stabilized AgNPs, generating a redshift of the absorption peak and a color change from yellow to pink. Under the optimized assay conditions, this colorimetric assay displays a good linear relationship (R 2 = 0.996) between relative absorbance ratios and the concentration of Cr3+ in the range of 0.05–20 μM, and the limit of detection (LOD) was estimated to be 0.01 μM by the UV-Vis spectra and 15 μM by the naked eye. Additionally, the colorimetric assay shows a good selectivity over other metal ions, and it is successfully applied to detection of Cr3+ in tap water, lake water, and river water samples with satisfactory recoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ye Y, Liu H, Yang L, Liu J (2012) Sensitive and selective SERS probe for trivalent chromium detection using citrate attached gold nanoparticles. Nano 4(20):6442–6448

    CAS  Google Scholar 

  2. Liu X, Henderson J, Sasaki T, Kishi Y (2009) Dramatic improvement in catalyst loadings and molar ratios of coupling partners for Ni/Cr-mediated coupling reactions: heterobimetallic catalysts. J Am Chem Soc 131(46):16678–16680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang M, Chen Z, Chen Q, Zou H, Lou J, He J (2008) Investigating DNA damage in tannery workers occupationally exposed to trivalent chromium using comet assay. Mutat Res Genet Toxicol Environ Mutagen 654(1):45–51

    Article  CAS  Google Scholar 

  4. Zhitkovich A (2005) Importance of chromium—DNA adducts in mutagenicity and toxicity of chromium (VI). Chem Res Toxicol 18(1):3–11

    Article  CAS  PubMed  Google Scholar 

  5. Zhitkovich A, Voitkun V, Kluz T, Costa M (1998) Utilization of DNA-protein cross-links as a biomarker of chromium exposure. Environ Health Persp 106(4):969–974

    Article  CAS  Google Scholar 

  6. Ajlec R, Čop M, Štupar J (1998) Interferences in the determination of chromium in plant materials and soil samples by flame atomic absorption spectrometry. Analyst 113(4):585–590

    Article  Google Scholar 

  7. Lafleur J, Salin E (2008) Speciation of chromium by high-performance thin-layer chromatography with direct determination by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 80(17):6821–6823

    Article  CAS  PubMed  Google Scholar 

  8. Wang D, Shiraishi Y, Hirai T (2010) A distyryl BODIPY derivative as a fluorescent probe for selective detection of chromium (III). Tetrahedron Lett 51(18):2545–2549

    Article  CAS  Google Scholar 

  9. Kasian O, Luk’yanenko T, Velichenko A (2013) Oxidation of Cr3+-ions at the composite ТіОх/РtОу electrode. ECS Trans 45(9):13–18

    Article  CAS  Google Scholar 

  10. Lee K, El-Sayed M (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110(39):19220–19225

    Article  CAS  PubMed  Google Scholar 

  11. Liu X, Xiang J, Tang Y, Zhang X, Fu Q, Zou J, Lin Y (2012) Colloidal gold nanoparticle probe-based immunochromatographic assay for the rapid detection of chromium ions in water and serum samples. Anal Chim Acta 745:99–105

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y, Lee I, Sung Y, Wu S (2013) Triazole functionalized gold nanoparticles for colorimetric Cr3+ sensing. Sensors Actuators B Chem 188:354–359

    Article  CAS  Google Scholar 

  13. Hughes S, Dasary S, Singh A, Glenn Z, Jamison H, Ray P, Yu H (2013) Sensitive and selective detection of trivalent chromium using hyper Rayleigh scattering with 5, 5′-dithio-bis-(2-nitrobenzoic acid)-modified gold nanoparticles. Sensors Actuators B Chem 178:514–519

    Article  CAS  Google Scholar 

  14. Zheng W, Li H, Chen W, Ji J, Jiang X (2016) Recyclable colorimetric detection of trivalent cations in aqueous media using zwitterionic gold nanoparticles. Anal Chem 88(7):4140–4146

    Article  CAS  PubMed  Google Scholar 

  15. Dang Y, Li H, Wang B, Li L, Wu Y (2009) Selective detection of trace Cr3+ in aqueous solution by using 5, 5′-dithiobis (2-nitrobenzoic acid)-modified gold nanoparticles. ACS Appl Mater Inter 1(7):1533–1538

    Article  CAS  Google Scholar 

  16. Jin W, Huang P, Chen Y, Wu F, Wan Y (2015) Colorimetric detection of Cr3+ using gold nanoparticles functionalized with 4-amino hippuric acid. J Nanopart Res 17:1–10

    Article  CAS  Google Scholar 

  17. Xin J, Miao L, Chen S, Wu A (2012) Colorimetric detection of Cr3+ using tripolyphosphate modified gold nanoparticles in aqueous solutions. Anal Methods 4(5):1259–1264

    Article  CAS  Google Scholar 

  18. Li J, Han C, Wu W, Zhang S, Guo J, Zhou H (2014) Selective and cyclic detection of Cr3+ using poly (methylacrylic acid) monolayer protected gold nanoparticles. New J Chem 38(2):717–722

    Article  CAS  Google Scholar 

  19. Chen W, Cao F, Zheng W, Tian Y, Xian Y, Xu P, Zhang W, Wang Z, Deng K, Jiang X (2015) Detection of the nanomolar level of total Cr [(III) and (VI)] by functionalized gold nanoparticles and a smartphone with the assistance of theoretical calculation models. Nano 7(5):2042–2049

    CAS  Google Scholar 

  20. He Y, Xu B, Li W, Yu H (2015) Silver nanoparticle-based chemiluminescent sensor array for pesticide discrimination. J Agric Food Chem 63(11):2930–2934

    Article  CAS  PubMed  Google Scholar 

  21. Marín-Hernández C, Santos-Figueroa L, Moragues M, Raposo M, Batista R, Costa S, Pardo T, Martínez-Máñez R, Sancenón F (2014) Imidazoanthraquinone derivatives for the chromofluorogenic sensing of basic anions and trivalent metal cations. J Org Chem 79(22):10752–10761

    Article  CAS  PubMed  Google Scholar 

  22. Xu Y, Dong Y, Jiang X, Zhu N (2013) Colorimetric detection of trivalent chromium in aqueous solution using tartrate-capped silver nanoparticles as probe. J Nanosci Nanotechnol 13:6820–6825

    Article  PubMed  Google Scholar 

  23. Ashworth U, Chaudry M (1962) Dye-binding capacity of milk proteins for amido black 10B and Orange G. J Dairy Sci 45(8):952–957

    Article  CAS  Google Scholar 

  24. Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J, Fernig D (2014) A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 139(19):4855–4861

    Article  CAS  PubMed  Google Scholar 

  25. Sharif T, Niaz A, Najeeb M, Zaman M, Ihsan M (2015) Isonicotinic acid hydrazide-based silver nanoparticles as simple colorimetric sensor for the detection of Cr 3+. Sensors Actuators B Chem 216:402–408

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Longshan Scholars Programme of Southwest University of Science and Technology (Grant No. 17LZX504) and the Teaching Reform Project of Southwest University of Science and Technology (Grant No. 15xn0077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haili Yu.

Electronic supplementary material

ESM 1

(DOCX 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Wang, Z. & Huang, W. Highly Stable and Sensitive Colorimetric Visualization of Trivalent Chromium Using Amido Black 10B-Stabilized Silver Nanoparticles. Plasmonics 13, 1459–1465 (2018). https://doi.org/10.1007/s11468-017-0651-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0651-9

Keywords

Navigation