Skip to main content
Log in

Synthesis of flower shaped ZnO thin films for resistive sensing of NO2 gas

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A soft chemical synthetic method is used to obtain highly crystalline ZnO flower thin films. Hexagonal wurtzite ZnO structure is observed from X-ray diffraction studies. A large-area jasmine flower-shaped morphology of ZnO is uniformly maintained at all deposition temperatures. The films were characterized by energy dispersive X-ray spectroscopy, Raman spectroscopy and field emission scanning electron microscopy. Elemental analysis showed the presence of Zn and O elements without any other impurity. Raman spectroscopy spectroscopy in combination with elemental and resistivity analysis indicated wurtzite ZnO structure and the presence of oxygen vacancies. The films deposited at 338 K were studied with respect to their gas sensing capability at operating temperatures of 473 K. They show a fast response (65 s) and recovery time (54 s) for NO2 gas at a concentration as low as 10 ppm.

Large area jasmine flower-shaped morphology of ZnO is uniformly maintained for all deposition temperatures using soft chemical synthesis. The maintained flower shaped ZnO thin films at all deposition temperatures is highly sensitive to NO2 gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kumar R, Al-Dossary O, Kumar G, Umar A (2015) Zinc oxide nanostructures for NO2 gas–sensor applications: a review. Nano-Micro Lett 7:97–120

    Article  Google Scholar 

  2. Dang X, Hu H, Wang S, Hu S (2015) Nanomaterials-based electrochemical sensors for nitric oxide. Microchim Acta 182:455–467

    Article  CAS  Google Scholar 

  3. Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S (2011) Semiconducting metal oxides as sensors for environmentally hazardous gases. Sensors Actuators B Chem 160:580–591

    Article  CAS  Google Scholar 

  4. Korotcenkov G, Brinzari V, Cho BK (2016) Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review. Microchim Acta 183:1033–1054

    Article  CAS  Google Scholar 

  5. Xiong W, Liu HH, Liu ST (2015) Conductometric sensor for ammonia and ethanol using gold nanoparticle-doped mesoporous TiO2. Microchim Acta 182:2345–2352

    Article  CAS  Google Scholar 

  6. Patil SJ, Patil AV, Dighavkar CG, Thakare KS, Borase RY, Nandre SJ, Deshpande NG, Ahire RR (2015) Semiconductor metal oxide compounds based gas sensors: a literature review. Front Mater Sci 9:14–37

  7. Wang L, Kang Y, Liu X, Zhang S, Huang W, Wang S (2012) ZnO nanorod gas sensor for ethanol detection. Sensors Actuators B Chem 162:237–243

    Article  CAS  Google Scholar 

  8. Li CC, Du ZF, Li LM, Yu HC, Wan Q, Wang TH (2007) Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature. Appl Phys Lett 91:032101–032103

    Article  Google Scholar 

  9. You L, Cao Y, Sun YF, Sun P, Zhang T, Du Y, Lu GY (2012) Humidity sensing properties of nanocrystalline ZnWO4 with porous structures. Sensors Actuators B Chem 161:799–804

    Article  CAS  Google Scholar 

  10. Forleo A, Francioso L, Capone S, Siciliano P, Lommens P, Hens Z (2010) Synthesis and gas sensing properties of ZnO quantum dots. Sensors Actuators B Chem 146:111–115

    Article  CAS  Google Scholar 

  11. Saxena V, Aswal DK, Kaur M, Koiry SP, Gupta SK, Yakhmi JV, Kshirsagar RJ, Deshpande SK (2007) Enhanced NO2 selectivity of hybrid poly(3-hexylthiophene): ZnO-nanowire thin films. Appl Phys Lett 90:043516–043513

    Article  Google Scholar 

  12. Schmidt-Mende L, MacManus-Driscoll JL (2007) ZnO–nanostructures, defects, and devices. Mater Today 10:40–48

    Article  CAS  Google Scholar 

  13. Ozturk S, Kılınc N, Ozturk ZZ (2013) Fabrication of ZnO nanorods for NO2 sensor applications: effect of dimensions and electrode position. J Alloys Compd 581:196–201

    Article  CAS  Google Scholar 

  14. Oh E, Choi HY, Jung SH, Cho S, Kim JC, Lee KH, Kang SW, Kim J, Yun JY, Jeong SH (2009) High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation. Sensors Actuators B Chem 141:239–243

    Article  CAS  Google Scholar 

  15. Zhe ZY, Hui WL, Ping LY, Qing XE, De Y, Tao CJ (2009) Preparation of ZnO Nanospheres and their applications in dye-sensitized solar cells. Chin Phys Lett 26:038201–038204

    Article  Google Scholar 

  16. Zhang Y, Chung J, Lee J, Myoung J, Lim S (2011) Synthesis of ZnO nanospheres with uniform nanopores by a hydrothermal process. J Phys Chem Solids 72:1548–1553

    Article  CAS  Google Scholar 

  17. Lee YJ, Ruby DS, Peters DW, Mckenzie BB, Hsu JWP (2008) ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett 8:1501–1505

    Article  CAS  Google Scholar 

  18. Hsueh TJ, Chang SJ, Hsu CL, Lina YR, Chen IC (2007) Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption. Appl Phys Lett 91:053111–053113

    Article  Google Scholar 

  19. Ranwa S, Kulriya PK, Sahu VK, Kukreja LM, Kumar M (2014) Defect-free ZnO nanorods for low temperature hydrogen sensor applications. Appl Phys Lett 105:213103–213104

    Article  Google Scholar 

  20. Dai ZR, Pan ZW, Wang ZL (2003) Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv Funct Mater 13:9–24

    Article  Google Scholar 

  21. Rodríguez-Carvajal J (1990) FULLpROF: a program for Rietveld refinement and pattern matching analysis, abstracts of the satellite meeting on powder diffraction of the XVth congress of the International Union of Crystallography, Toulouse 127

  22. Samanta K, Bhattacharya P, Katiyar RS (2006) Raman scattering studies in dilute magnetic semiconductor Zn1-xCOxO. Phys rev B 73:245213-1-5

  23. Arguello CA, Rousseau DL, Porto PS (1969) First-order Raman effect in Wurtzite-type crystals. Phys Rev 181:1351–1363

    Article  CAS  Google Scholar 

  24. Zhang Y, Jia H, Wang R, Chen C, Luo X, Yu D (2003) Low temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate. Appl Phys Lett 83:4631–4633

    Article  CAS  Google Scholar 

  25. Huang Y, Liu M, Li Z, Zeng Y, Liu S (2003) Raman spectroscopy study of ZnO-based ceramic films fabricated by novel sol-gel process. Mater Sci Eng B 97:111–116

    Article  Google Scholar 

  26. Das J, Pradhan SK, Mishra DK, Sahu DR, Sarangi S, Varma S, Nayak BB, Huang JL, Roul BK (2011) Unusual ferromagnetism in high purity ZnO sintered ceramics. Mater Res Bull 46:42–47

    Article  CAS  Google Scholar 

  27. Yang LW, Wua XL, Huang GS, Qiu T, Yang YM (2004) In situ synthesis of Mn-doped ZnO multileg nanostructures and Mn-related Raman vibration. J Appl Phys 97(014308):1–4

    Google Scholar 

  28. Tian J, Yang G, Jiang D, Su F, Zhang Z (2016) A hybrid material consisting of bulk-reduced TiO2, graphene oxide and polyaniline for resistance based sensing of gaseous ammonia at room temperature. Microchim Acta 183:2871–2878

    Article  CAS  Google Scholar 

  29. Ahn MW, Park KS, Heo JH, Park JG, Kim DW, Choi KJ, Lee JH, Hong SH (2008) Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl Phys Lett 93:263103–263103

    Article  Google Scholar 

  30. Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Engineer B 139:1–23

    Article  CAS  Google Scholar 

  31. Yan D, Hu M, Li S, Liang J, Wu Y, Shuangyun M (2014) Electrochemical deposition of ZnO nanostructures onto porous silicon and their enhanced gas sensing to NO2 at room temperature. Electrochim Acta 115:297–305

    Article  CAS  Google Scholar 

  32. Shouli B, Xin L, Dianqing L, Song C, Ruixian L, Aifan C (2011) Synthesis of ZnO nanorods and its application in NO2 sensors. Sens Actuators B: Chem 153(1):110–116

    Article  Google Scholar 

  33. An S, Park S, Ko H, Jin C, Lee W, Lee C (2013) Enhanced gas sensing properties of branched ZnO nanowires. Thin Solid Films 547:241–245

    Article  CAS  Google Scholar 

  34. Zhang S, Chen HS, Matras-Postolek K, Yang P (2015) ZnO nanoflowers with single crystal structure towards enhanced gas sensing and photocatalysis. Phys Chem Chem Phys 17:30300–30306

    Article  CAS  Google Scholar 

  35. Zhang Y, Liu T, Hao J, Lin L, Zeng W, Peng X, Wang Z (2013) Enhancement of NH3 sensing performance in flower-like ZnO nanostructures and their growth mechanism. Appl Surf Sci 357:31–36

    Article  Google Scholar 

  36. Sadek AZ, Wlodarski W, Kalantar-zadeh K, Choopun S (2005) ZnO nanobelt based conductometric H2 and NO2 gas sensors, in SENSORS 2005. Proceedings of the 2005 I.E. sensors conference, IEEE, Piscataway, N.J., pp. 1326–1329. doi: 10.1109/ICSENS.2005.1597952

  37. Chougule MA, Sen S, Patil VB (2012) Fabrication of nanostructured ZnO thin film sensor for NO2 monitoring. Ceram Int 38:2685–2692

    Article  CAS  Google Scholar 

  38. Kolekar TV, Bandgar SS, Shirguppikar SS, Ganachari VS (2013) Synthesis and characterization of ZnO nanoparticles for efficient gas sensors. Arch Appl Sci Res 5:20–28

    CAS  Google Scholar 

  39. Pawar RC, Lee JW, Patil VB, Lee CS (2013) Synthesis of multi-dimensional ZnO nanostructures in aqueous medium for the application of gas sensor. Sens Actuators B: Chem 187:323–330

    Article  CAS  Google Scholar 

  40. Vanalakar SA, Patil VL, Harale NS, Vhanalakar SA, Gang MG, Kim JY, Patil PS, Kim JH (2015) Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications. Sens Actuators B: Chem 221:1195–1201

    Article  CAS  Google Scholar 

  41. Rai P, Raj S, Ko KJ (2013) Park KK, Yu YT. Synthesis of flower-like ZnO microstructures for gas sensor applications Sens Actuators B: Chem 178:107–112

    CAS  Google Scholar 

Download references

Acknowledgement

NGD acknowledges Department of Science and Technology (DST), New Delhi and Indian National Academy of Science (INSA), New Delhi for DST INSPIRE FACULTY award [IFA-13 pH -61 dated 1 August 2013]. Also, NGD acknowledges UGC-DAE Consortium for Scientific Research (CSR), Indore for research funding through CRS project [CSR/Acctts/2015–16/81 dated 27 April 2015].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. R. Gosavi or N. G. Deshpande.

Ethics declarations

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rane, Y.N., Shende, D.A., Raghuwanshi, M.G. et al. Synthesis of flower shaped ZnO thin films for resistive sensing of NO2 gas. Microchim Acta 184, 2455–2463 (2017). https://doi.org/10.1007/s00604-017-2271-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2271-7

Keywords

Navigation