Skip to main content
Log in

A triple immunochromatographic test for simultaneous determination of cardiac troponin I, fatty acid binding protein, and C-reactive protein biomarkers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an immunochromatographic test for the rapid detection of cardiac dysfunction by quantifying the cardiac markers troponin I (TnI), fatty acid binding protein (FABP), and C-reactive protein (CPR) in serum. The dynamics of the formation of the immuno-complexes between antibodies (labeled with gold nanoparticles) and analytes (biomarkers) during immunochromatography was studied, and requirements are specified in terms of membrane carriers and reaction medium that are necessary to detect these biomarkers with their varying intracellular localizations and physical and chemical properties. The test can be performed within 10 min and enables TnI to be determined in concentrations of ≥ 1.0 ng mL−1, FABP in concentrations of ≥ 3.8 ng mL−1, and CPR in concentrations of ≥ 600 ng mL−1. The results of the new test system correlated well with those obtained by ELISAs as used in cardiodiagnostics. It is emphasized here that simultaneous control of several myocardial biomarkers provides more information on the dynamics and development of the pathological process and enables more effective therapeutic decisions.

An immunochromatographic test system for rapid diagnostics of cardiac dysfunctions was developed. In 10 min it provides detection of two biomarker of acute myocardial infarction, namely «rapid» one, fatty acid binding protein and «slow» one, troponin I and also inflammation biomarker, C-reactive protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Riegel B, Hanlon AL, McKinley S, Moser DK, Meischke H, Doering LV, Davidson P, Pelter MM, Dracup K (2010) Differences in mortality in acute coronary syndrome symptom clusters. Am Heart J 159(3):392–398. doi:10.1016/j.ahj.2010.01.003

    Article  Google Scholar 

  2. WHO (2015) Cardiovascular Diseases (CVDs). http://www.who.int/mediacentre/factsheets/fs317/en/. Reviewed October 2016

  3. Global Burden of Disease Study (2013) Collaborators (2015) global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet 386:743–800. doi:10.1016/S0140-6736(15)60692-4

    Google Scholar 

  4. Joint International Society and Federation of Cardiology (1979) Nomenclature and criteria for diagnosis of ischemic heart disease. Circulation 59:607–609 http://circ.ahajournals.org/content/circulationaha/59/3/607.full.pdf

    Article  Google Scholar 

  5. Collinson PO, Garrison L, Christenson RH (2015) Cardiac biomarkers – a short biography. Clin Biochem 48:197–200. doi:10.1016/j.clinbiochem.2014.11.014

    Article  Google Scholar 

  6. Bruins Slot MHE, van der Heijde GJMG, Stelpstra SD, Hoes AW, Rutten FH (2013) Point-of-care tests in suspected acute myocardial infarction: a systematic review. Int J Cardiol 168(6):5355–5362. doi:10.1016/j.ijcard.2013.08.002

    Article  Google Scholar 

  7. Thygesen K, Alpert JS, White HD (2007) Universal definition of myocardial infarction. J Am Coll Cardiol 50(22):2173–2195. doi:10.1016/j.jacc.2007.09.011

    Article  Google Scholar 

  8. Lippi G, Mattiuzzi C, Cervellin G (2013) Critical review and meta-analysis on the combination of heart-type fatty acid binding protein (H-FABP) and troponin for early diagnosis of acute myocardial infarction. Clin Biochem 46(1–2):26–30. doi:10.1016/j.clinbiochem.2012.10.016

    Article  CAS  Google Scholar 

  9. Ridker PM, Cook NR (2004) Clinical usefulness of very high and very low levels of C-reactive protein across the full range of Framingham risk scores. Circulation 109(16):1955–1959. doi:10.1161/01.CIR.0000125690.80303.A8

    Article  Google Scholar 

  10. Hasanzadeh M, Shadjou N, Soleymani J, Omidinia E, de la Guardia M (2013) Optical immunosensing of effective cardiac biomarkers on acute myocardial infarction. TrAC – Trends in Anal Chem 51:158–168. doi:10.1016/j.trac.2013.06.010

    Article  CAS  Google Scholar 

  11. Wong RC, Tse HY (2009) Lateral flow immunoassay. Humana Press, New York, p. 224

    Book  Google Scholar 

  12. Zhang X, Schulz BL, Punyadeera C (2016) The current status of heart failure diagnostic biomarkers. Expert Rev Mol Diagn 16(4):487–500. doi:10.1586/14737159.2016.1144474

    Article  CAS  Google Scholar 

  13. Altintas Z, Fakanya WM, Tothill IE (2014) Cardiovascular disease detection using bio-sensing techniques. Talanta 128(3):177–186. doi:10.1016/j.talanta.2014.04.060

    Article  CAS  Google Scholar 

  14. Posthuma-Trumpie G, Korf J, van Amerongen A (2009) Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393(2):569–582. doi:10.1007/s00216-008-2287-2

    Article  CAS  Google Scholar 

  15. Wang LB, Xu LG, Kuang H, Xu CL, Kotov NA (2012) Dynamic nanoparticle assemblies. Acc Chem Res 45(11):1916–1926. doi:10.1021/ar200305f

    Article  CAS  Google Scholar 

  16. Kuang H, Zhao Y, Ma W, Xu LG, Wang LB, Xu CL (2011) Recent developments in analytical applications of quantum dots. TrAC – Trends in Anal Chem 30(10):1620–1636. doi:10.1016/j.trac.2011.04.022

    Article  CAS  Google Scholar 

  17. Xu LG, Ma W, Wang LB, Xu CL, Kuang H, Kotov NA (2013) Nanoparticle assemblies: dimensional transformation of nanomaterials and scalability. Chem Soc Rev 42(7):3114–3126. doi:10.1039/c3cs35460a

    Article  CAS  Google Scholar 

  18. Ma W, Xu LG, Wang LB, Kuang H, Xu CL (2016) Orientational nanoparticle assemblies and biosensors. Biosens Bioelectron 79:220–236. doi:10.1016/j.bios.2015.12.021

    Article  CAS  Google Scholar 

  19. Masinde LA, Sheng W, Xu X, Zhang Y, Yuan M, Kennedy IR, Wang S (2013) Colloidal gold based immunochromatographic strip for the simple and sensitive determination of aflatoxin B1 and B2 in corn and rice. Microchim Acta 180(9–10):921–928. doi:10.1007/s00604-013-1008-5

    Article  CAS  Google Scholar 

  20. Taranova NA, Byzova NA, Zaiko VV, Starovoitova TA, Vengerov Y, Zherdev AV, Dzantiev BB (2013) Integration of lateral flow and microarray technologies for multiplex immunoassay: application to the determination of drugs of abuse. Microchim Acta 180(11–12):1165–1172. doi:10.1007/s00604-013-1043-2

    Article  CAS  Google Scholar 

  21. Wang L, Cai J, Wang Y, Fang Q, Wang S, Cheng Q, Du D, Lin Y, Liu F (2014) A bare-eye-based lateral flow immunoassay based on the use of gold nanoparticles for simultaneous detection of three pesticides. Microchim Acta 181(13–14):1565–1572. doi:10.1007/s00604-014-1247-0

    Article  CAS  Google Scholar 

  22. Man Y, Lv X, Iqbal J, Peng G, Song D, Zhang C, Deng Y (2015) Microchip based and immunochromatographic strip assays for the visual detection of interleukin-6 and of tumor necrosis factor alpha using gold nanoparticles as labels. Microchim Acta 182(3–4):597–604. doi:10.1007/s00604-014-1362-y

    Article  CAS  Google Scholar 

  23. Kumar R, Sinha RP, Singh M, Rajendran SRCK, Kumar A (2016) Multiplex dipstick technologies for rapid and simultaneous screening of analytes of importance in Agri-food-nutrition and health care: a review. J AOAC Intern 99(2):512–519. doi:10.5740/jaoacint.15-0234

    Article  CAS  Google Scholar 

  24. Li J, Macdonald J (2016) Multiplexed lateral flow biosensors: technological advances for radically improving point-of-care diagnoses. Biosens Bioelectron 83:177–192. doi:10.1016/j.bios.2016.04.021

    Article  CAS  Google Scholar 

  25. Hermanson GT (2013) Bioconjugate Techniques, 3rd edn. Acad. Press, Elsevier, Amsterdam, p. 1200

    Google Scholar 

  26. Frens G (1973) Controlled nucleation for the regulation on particle size in monodisperse gold suspension. Nature Phys Sci 241(105):20–22. doi:10.1038/physci241020a0

    Article  CAS  Google Scholar 

  27. Byzova NA, Zvereva EA, Zherdev AV, Eremin SA, Dzantiev BB (2010) Rapid pretreatment-free immunochromatographic assay of chloramphenicol in milk. Talanta 81(3):843–848. doi:10.1016/j.talanta.2010.01.025

    Article  CAS  Google Scholar 

  28. Wild D (2013) The immunoassay handbook. Theory and applications of ligand binding, ELISA and Related techniques, 4th edn. Elsevier Science, Amsterdam, p. 1036

    Google Scholar 

  29. Byzova NA, Zherdev AV, Sveshnikov PG, Sadykhov EG, Dzantiev BB (2015) Development of an immunochromatographic test system for the detection of Helicobacter pylori antigens. Appl Biochem Microbiol 51(5):608–617. doi:10.1134/S000368381505004X

    Article  CAS  Google Scholar 

  30. Millipore Corp (2013) Rapid lateral flow test strips: consideration for product development. http://www.merckmillipore.com/INTERSHOP/web/WFS/Merck-RU-Site/ru_RU/-/USD/ShowDocument-Pronet?id=201306.15671

  31. Byzova NA, Safenkova IV, Chirkov SN, Avdienko VG, Guseva AN, Mitrofanova IV, Zherdev AV, Dzantiev BB, Atabekov JG (2010) Interaction of plum pox virus with specific colloidal gold-labeled antibodies and development of immunochromatographic assay of the virus. Biochem Mosc 75(11):1393–1403. doi:10.1134/S000629791011012X

    Article  CAS  Google Scholar 

  32. Lin T, Shao J-J, Du J-Z, Cong G-Z, Gao S-D, Chang H (2011) Development of a serotype colloidal gold strip using monoclonal antibody for rapid detection type Asia1 foot-and-mouth disease. Virol J 8:418. doi:10.1186/1743-422X-8-418

    Article  CAS  Google Scholar 

  33. Byzova NA, Lukhverchik LN, Zherdev AV, Piven NV, Burakovskii AI, Dzantiev BB (2013) Development of an immunochromatographic test system for the detection of human epidermal growth factor. Appl Biochem Microbiol 49(6):606–612. doi:10.1134/S0003683813060033

    Article  CAS  Google Scholar 

  34. Chan KW, Lo C, Chu CS, Chin LT, Wang YT, Yang WC (2016) Development of a colloidal gold-based immunochromatographic test strip for detection of cetacean myoglobin. J Vis Exp 113:e53433. doi:10.3791/53433

    Google Scholar 

Download references

Acknowledgements

We are grateful to S. M. Pridvorova (A.N. Bach Institute of Biochemistry, Federal Research Center «Fundamentals of Biotechnology») for performing transmission electron microscopy measurements of a gold nanoparticle preparation. This investigation was supported by the Russian Science Foundation project No. 14-14-01131 (the reagents for immunodetection of CRP) and by the Federal Target Program «Development of the Pharmaceutical and Medical Industry of Russia for 2013-2020», contract No. 13411.1008799.13.039 (the reagents for immunodetection of TnI and FABP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris B. Dzantiev.

Ethics declarations

All serum samples were collected after approval by the local ethics committee and after obtaining written, informed consent from patients.

Electronic supplementary material

ESM 1

(PDF 224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byzova, N.A., Zherdev, A.V., Vengerov, Y.Y. et al. A triple immunochromatographic test for simultaneous determination of cardiac troponin I, fatty acid binding protein, and C-reactive protein biomarkers. Microchim Acta 184, 463–471 (2017). https://doi.org/10.1007/s00604-016-2022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2022-1

Keywords

Navigation