Skip to main content
Log in

Fluorescent carbon dots for sensitive determination and intracellular imaging of zinc(II) ion

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe the preparation of carbon dots (CDs) from glucose that possess high stability, a quantum yield of 0.32, and low toxicity (according to an MTT assay). They were used, in combination with the fluorogenic zinc(II) probe quercetin to establish a fluorescence resonance energy transfer (FRET) system for the determination of Zn(II). The CDs are acting as the donor, and the quercetin-Zn(II) complex as the acceptor. This is possible because of the strong overlap between the fluorescence spectrum of CDs and the absorption spectrum of the complex. The method enables Zn(II) to be determined in the 2 to 100 μM concentration range, with a 2 μM detection limit. The method was applied to image the distribution of Zn(II) ions in HeLa cells.

Based on the fluorescence resonance energy transfer (FRET) between carbon dots and quercetin (QCT)-Zn2+, the fluorescence indicator was established, which displays high sensitivity and selectivity in the detection of Zn2+. The method was also applied to image the distribution of Zn(II) ions in HeLa cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbasi MA, Ibupoto ZH, Hussain M, KhanY KA, Nur O, Willander M (2012) Potentiometric zinc ion sensor based on honeycomb-like NiO nanostructures. Sensors 12:15424–15437

    Article  CAS  Google Scholar 

  2. Hanaoka K, Kikuchi K, Kojima H, Urano Y, Nagano T (2004) Development of a zinc ion-selective luminescent lanthanide chemosensor for biological applications. J Am Chem Soc 126:12470–12476

    Article  CAS  Google Scholar 

  3. Berg JM, Shi YG (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085

    Article  CAS  Google Scholar 

  4. Bush AI, Pettingell WH, Multhaup G, Paradis MD, Vonsattel JP, Gusella JF, Beyreuther K, Masters CL, Tanzi RE (1994) Rapid induction of Alzheimer A beta amyloid formation by zinc. Science 265:1464–1467

    Article  CAS  Google Scholar 

  5. Shi YP, Chen ZH, Cheng X, Pan Y, Zhang H, Zhang ZM, Li CW, Yi CQ (2014) A novel dual-emission ratiometric fluorescent nanoprobe for sensing and intracellular imaging of Zn2+. Biosens Bioelectron 61:397–403

    Article  CAS  Google Scholar 

  6. Moskvin LN, Kamentsev MY, Grigor’ev GL, Yakimova NM (2010) Capillary electrophoretic determination of zinc and cadmium ions in aqueous solutions with ion-exchange preconcentration. J Anal Chem 65:99–102

    Article  CAS  Google Scholar 

  7. Kaur P, Kaur S, Mahajan A, Singh K (2008) Highly selective colorimetric sensor for Zn2+ based on hetarylazo derivative. Inorg Chem Commun 11:626–629

    Article  CAS  Google Scholar 

  8. Duan N, Wu SJ, Dai SL, Miao TT, Chen J, Wang ZP (2015) Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim Acta 182:917–923

    Article  CAS  Google Scholar 

  9. Yu CM, Li XZ, Zeng F, Zheng FY, Wu SZ (2013) Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem Commun 49:403–405

    Article  CAS  Google Scholar 

  10. Liu BY, Zeng F, Wu SZ, Wang JS, Tang FC (2013) Ratiometric sensing of mercury(II) based on a FRET process on silica core-shell nanoparticles acting as vehicles. Microchim Acta 180:845–853

    Article  CAS  Google Scholar 

  11. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  12. Li MJ, Kwok WM, Lam WH, Tao CH, Yam VWW, Phillips DL (2009) Synthesis of coumarin-appended pyridyl tricarbonylrhenium(I) 2,2′-bipyridyl complexes with oligoether spacer and their fluorescence resonance energy transfer studies. Organometallics 28:1620–1630

    Article  CAS  Google Scholar 

  13. Fan JL, Hu MM, Zhan P, Peng XJ (2013) Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing. Chem Soc Rev 42:29–43

    Article  CAS  Google Scholar 

  14. Yam VWW, Song HO, Chan STW, Zhu NY, Tao CH, Wong KMC, Wu LX (2009) Synthesis, characterization, ion-binding properties, and fluorescence resonance energy transfer behavior of rhenium(I) complexes containing a coumarin-appended 2,2′-bipyridine. J Phys Chem C 113:11674–11682

    Article  CAS  Google Scholar 

  15. Qu Q, Zhu AW, Shao XL, Shi GY, Tian Y (2012) Development of a carbon quantum dots-based fluorescent Cu2+ probe suitable for living cell imaging. Chem Commun 48:5473–5475

    Article  CAS  Google Scholar 

  16. Zhou L, Lin YH, Huang ZZ, Ren JS, Qu XG (2012) Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem Commun 48:1147–1149

    Article  CAS  Google Scholar 

  17. Li HT, He XD, Kang ZH, Huang H, Liu Y, Liu JL, Lian SY, Tsang CHA, Yang XB, Lee ST (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49:4430–4434

    Article  CAS  Google Scholar 

  18. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744

    Article  CAS  Google Scholar 

  19. Wang JL, Wei JH, Su SH, Qiu JJ (2015) Novel fluorescence resonance energy transfer optical sensors for vitamin B12 detection using thermally reduced carbon dots. New J Chem 39:501–507

    Article  CAS  Google Scholar 

  20. Zou Y, Yan FY, Dai LF, Luo YM, Fu Y, Yang N, Wun JY, Chen L (2014) High photoluminescent carbon nanodots and quercetin-Al3+ construct a ratiometric fluorescent sensing system. Carbon 77:1148–1156

    Article  CAS  Google Scholar 

  21. Boots AW, Haenen GRMM, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337

    Article  CAS  Google Scholar 

  22. Ahmedova A, Paradowska K, Wawer I (2012) 1H, 13C MAS NMR and DFT GIAO study of quercetin and its complex with Al(III) in solid state. J Inorg Biochem 110:27–35

    Article  CAS  Google Scholar 

  23. Jaiswal A, Ghosh SS, Chattopadhyay A (2012) One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem Commun 48:407–409

    Article  CAS  Google Scholar 

  24. Xie SY, Huang RB, Zheng LS (1999) Separation and identification of perchlorinated polycyclic aromatic hydrocarbons by high-performance liquid chromatography and ultraviolet absorption spectroscopy. J Chromatogr A 864:173–177

    Article  CAS  Google Scholar 

  25. Zheng LY, Chi YW, Dong YQ, Lin JP, Wang BB (2009) Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 131:4564–4565

    Article  CAS  Google Scholar 

  26. Kang ZH, Wang EB, Mao BD, Su ZM, Chen L, Xu L (2005) obtaining carbon nanotubes from grass. Nanotechnology 16:1192–1195

    Article  CAS  Google Scholar 

  27. Sun XM, Li YD (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed 43:597–601

    Article  Google Scholar 

  28. Li HT, Ming H, Liu Y, Yu H, He XD, Huang H, Pan KM, Kang ZH, Lee ST (2011) Fluorescent carbon nanoparticles: electrochemical synthesis and their pH sensitive photoluminescence properties. New J Chem 35:2666–2670

    Article  CAS  Google Scholar 

  29. Han YZ, Huang H, Zhang HC, Liu Y, Han X, Liu RH, Li HT, Kang ZH (2014) Carbon quantum dots with photoenhanced catalytic activity in aldol condensations. ACS Catal 4:781–787

    Article  CAS  Google Scholar 

  30. Liu RL, Wu DP, Liu SH, Koynov K, Knoll W, Li Q (2009) An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem Int Ed 48:4598–4601

    Article  Google Scholar 

  31. Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew Chem Int Ed 45:4562–4588

    Article  CAS  Google Scholar 

  32. Kundu A, Nandi S, Layek RK, Nandi AK (2013) Fluorescence resonance energy transfer from sulfonated graphene to riboflavin: a simple way to detect vitamin B2. ACS Appl Mater Interfaces 5:7392–7399

    Article  CAS  Google Scholar 

  33. Supian SM, Ling TL, Heng LY, Chong KF (2013) Quantitative determination of Al(III) ion by using Alizarin Red S including its microspheres optical sensing material. Anal Methods 5:2602–2609

    Article  CAS  Google Scholar 

  34. Sinha S, Mukherjee T, Mathew J, Mukhopadhyay SK, Ghosh S (2014) Triazole-based Zn2+-specific molecular marker for fluorescence bioimaging. Anal Chim Acta 822:60–68

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Collaborative Innovation Center of Suzhou Nano Science and Technology, the National Basic Research Program of China (973 Program) (2012CB825803, 2013CB932702), the National Natural Science Foundation of China (51422207, 51132006, 21471106), the Specialized Research Fund for the Doctoral Program of Higher Education (20123201110018), a Suzhou Planning Project of Science and Technology (ZXG2012028), the Natural Science Foundation of Jiangsu Province of China (BK20140310), China Postdoctoral Science Foundation (2014M560445), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Huang or Yang Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.43 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Kong, W., Li, H. et al. Fluorescent carbon dots for sensitive determination and intracellular imaging of zinc(II) ion. Microchim Acta 182, 2443–2450 (2015). https://doi.org/10.1007/s00604-015-1592-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1592-7

Keywords

Navigation