Skip to main content
Log in

Ion-imprinted polymeric nanoparticles for fast and selective separation of lanthanum(III)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This article describes the preparation of a La(III) ion-imprinted nanoparticles (NPs) containing the La(III)-chelating ligand 2,2’:6’,6”-terpyridine (terpy). La(III) forms stable 1:1 and 1:2 complexes with terpy in acetonitrile solution. The NPs were prepared from ethyleneglycol dimethacrylate (the cross-linking monomer) via precipitation polymerization in the presence of the La(III)-terpy complex. La(III) ions were then removed from the NPs with nitric acid. The NPs were characterized by IR spectroscopy, scanning electron microscopy and elemental analysis. SEM micrographs showed the colloidal NPs to be slightly irregularly shaped and to have a diameter of 50 to 100 nm. The optimum pH value for sorption is 3.5. Sorption and desorption of La(III) is complete within 2 to 30 min. La(III) was quantified by ICP-AES. Figures of merit include a sorbent capacity for La(II) of 133.8 mg g−1, an enrichment factor of 17.5, a relative standard deviation of the determination of 1.7 % (at 3Sb/m), and a detection limit of 1.4 ng mL−1. The results indicate an increased affinity of the material toward La(III) over other multivalent metal ions of smaller ionic radius. The imprinted NPs were regenerated twenty times without a significant loss in affinity.

Ion-imprinted polymer nanoparticles were synthesized via precipitation polymerization and employed as a sorbent for the separation and preconcentration of trace amounts of lanthanum(III) ion from aqueous samples in the batch mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tokonami S, Shiigi H, Nagaoka T (2009) Review: micro- and nanosized molecularly imprinted polymers for high-throughput analytical applications. Anal Chim Acta 641:7–13

    Article  CAS  Google Scholar 

  2. Downey JS, Frank RS, Li WH, Stöver HDH (1999) Growth mechanism of poly(divinylbenzene) microspheres in precipitation polymerization. Macromolecules 32:2838–2844

    Article  CAS  Google Scholar 

  3. Naka Y, Yamamoto Y (1992) Preparation of microspheres by radiation-induced polymerization II. mechanism of microsphere growth. J Polym Sci Part A: Polym Chem 30:1287–1298

    Article  CAS  Google Scholar 

  4. Chaitidou S, Kotrotsiou O, Kotti K, Kammona O, Bukhari M, Kiparissides C (2008) Precipitation polymerization for the synthesis of nanostructured particles. Mat Sci Eng B 152:55–59

    Article  CAS  Google Scholar 

  5. Kala R, Gladis JM, Rao TP (2004) Preconcentrative separation of erbium from Y, Dy, Ho Tb and Tm by using ion imprinted polymer particles via solid phase extraction. Anal Chim Acta 518:143–150

    Article  CAS  Google Scholar 

  6. Rao TP, Kala R, Daniel S (2006) Metal ion-imprinted polymers-novel materials for selective recognition of inorganics. Anal Chim Acta 578:105–116

    Article  CAS  Google Scholar 

  7. Araki K, Marumaya T, Kamiya N, Goto M (2005) Metal ion-selective membrane prepared by surface molecular imprinting. J Chromatogr B 818:141–145

    Article  CAS  Google Scholar 

  8. Shamsipur M, Besharati-Seidani A, Fasihi J, Sharghi H (2010) Synthesis and characterization of novel ion-imprinted polymeric nanoparticles for very fast and highly selective recognition of copper(II) ions. Talanta 83:674–681

    Article  CAS  Google Scholar 

  9. Saatçılar Ö, Şatıroğlu N, Say R, Bektaş S, Denizli A (2006) Binding behaviour of Fe3+ ions on ion-imprinted polymeric beads for analytical applications. J Appl Polym Sci 101:3520–3528

    Article  Google Scholar 

  10. Shamsipur M, Rajabi HZ, Beyzavi MH, Sharghi H (2013) Bulk polymer nanoparticles containing a tetrakis (3-hydroxyphenyl)porphyrin for fast and highly selective separation of mercury ions. Microchim Acta 180:791–799

    Article  CAS  Google Scholar 

  11. Zambrzycka H, Godlewska-Żyłkiewicz B (2014) A new ion imprinted polymer based on Ru(III)-thiobarbituric acid complex for solid phase extraction of ruthenium(III) prior to its determination by ETAAS. Microchim Acta 181:1019–1027

    Article  CAS  Google Scholar 

  12. Aliakbari A, Amini MM, Mehrani K, Moghadam Zadeh HR (2014) Magnetic ion imprinted polymer nanoparticles for the preconcentration of vanadium(IV) ions. Microchim Acta 181:1931–1938

    Article  CAS  Google Scholar 

  13. Kala R, Rao TP (2006) Ion imprinted polymer particles for separation of yttrium from selected lanthanides. J Sep Sci 29:1281–1287

    Article  CAS  Google Scholar 

  14. Bae SY, Southard GL, Murray GM (1999) Molecularly imprinted ion exchange resin for purification, preconcentration and determination of UO2 2+ by spectrophotometry and plasma spectrometry. Anal Chim Acta 397:173–181

    Article  CAS  Google Scholar 

  15. El-Sofany EA (2008) Removal of lanthanum and gadolinium from nitrate medium using Aliquat-336 impregnated onto Amberlite XAD-4. J Hazard Mater 153:948–954

    Article  CAS  Google Scholar 

  16. Saleh MI, Bari MF, Saad B (2002) Solvent extraction of lanthanum(III) from acidic nitrate acetate medium by Cyanex 272 in toluene. Hydrometallurgy 63:75–84

    Article  CAS  Google Scholar 

  17. Fujimori E, Hayashi T, Inagaki K, Haraguchi H (1999) Determination of lanthanum and rare earth elements in bovine whole blood reference material by ICP-MS after coprecipitation preconcentration with heme-iron as coprecipitant Fresenius. J Anal Chem 363:277–282

    Article  CAS  Google Scholar 

  18. Vizioli N, Gil R, Martínez LD, Silva MF (2009) On-line solid phase extraction CZE for the simultaneous determination of lanthanum and gadolinium at picogram per liter levels. Electrophoresis 30:2681–2687

    Article  CAS  Google Scholar 

  19. De Jong N, Draye M, Favre-Réguillon A, LeBuzit G, Cote G, Foos J (2005) Lanthanum(III) and gadolinium(III) separation by cloud point extraction. J Colloid and Interf Sci 291:303–306

    Article  Google Scholar 

  20. Tong S, Zhao S, Zhou W, Li R, Jia Q (2011) Modification of multi-walled carbon nanotubes with tannic acid for the adsorption of La, Tb and Lu ions. Microchim Acta 174:257–264

    Article  CAS  Google Scholar 

  21. Rahman MM, Bahadar Khan S, Marwani HM, Asiri AM (2014) SnO2–TiO2 nanocomposites as new adsorbent for efficient removal of La(III) ions from aqueous solutions. J Taiwan Inst Chem Eng 45:1964–1974

    Article  CAS  Google Scholar 

  22. Marwani HM, Alsafrani AE (2013) New solid phase extractor based on ionic liquid functionalized silica gel surface for selective separation and determination of lanthanum. J Anal Sci Technol 4:1–13

    Article  Google Scholar 

  23. Sert S, Kütahyali C, İnan S, Talip Z, Çetinkaya B, Eral M (2008) Biosorption of lanthanum and cerium from aqueous solutions by Platanus orientalis leaf powder. Hydrometallurgy 90:13–18

    Article  CAS  Google Scholar 

  24. Salhin A, Alhony AKM, Ab Ghani SB, Salleh B (2013) Acenaphthenequinone hydrazone derivative based Sol–gel in solid-phase extraction of lanthanum (III) in aqueous. World Appl Sci J 21:433–441

    CAS  Google Scholar 

  25. Wu D, Zhao J, Zhang L, Wu Q, Yang Y (2010) Lanthanum adsorption using iron oxide loaded calcium alginate beads. Hydrometallurgy 101:76–83

    Article  CAS  Google Scholar 

  26. Dave SR, Kaur H, Menon SK (2010) Selective solid-phase extraction of rare earth elements by the chemically modified Amberlite XAD-4 resin with azacrown ether. React Funct Polym 70:692–698

    Article  CAS  Google Scholar 

  27. Uezu K, Kuwabara T, Yoshida M, Goto M, Furusaki S (2004) Lanthanoid element recognition on surface-imprinted polymers containing dioleylphosphoric acid as a functional host. Anal Sci 20:1593–1597

    Article  CAS  Google Scholar 

  28. Constable EC (1986) The coordination chemistry of 2,2’:6’,2”-terpyridine and higher oligopyridines. Adv Org Chem Radiochem 30:69–121

    CAS  Google Scholar 

  29. Dai H, Xiao D, He H, Li H, Yuan D, Zhang C (2014) Synthesis and analytical applications of molecularly imprinted polymers on the surface of carbon nanotubes: a review. Microchim Acta 1–16

  30. Nicely VA, Dye JL (1971) A general purpose curve fitting program for class and research use. J Chem Educ 48:443–448

    Article  Google Scholar 

  31. Büyüktiryaki S, Say R, Denizli A, Ersöz A (2007) Mimicking receptor for methylmercury preconcentration based on ion-imprinting. Talanta 71:699–705

    Article  Google Scholar 

  32. Yoshida M, Uezu K, Goto M, Furusaki S (1999) Metal ion imprinted microsphere prepared by surface molecular imprinting technique using water-in-oil-in-water emulsions. J Appl Polym Sci 73:1223–1230

    Article  CAS  Google Scholar 

  33. Labrou NE, Karagouni A, Clonis YD (1995) Biomimetic-dye affinity adsorbents for enzyme purification: application to the one-step purification of Candida boidinii formate dehydrogenase. Biotechnol Bioeng 48:278–288

    Article  CAS  Google Scholar 

  34. Molochnikov LS, Kovalyova EG, Zagorodni AA, Muhammed M, Sultanov YM, Efendiev AA (2003) Coordination of Cu(II) and Ni(II) in polymers imprinted so as to optimize amine chelate formation. Polymer 44:4805–4815

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Besharati-Seidani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besharati-Seidani, A., Shamsipur, M. Ion-imprinted polymeric nanoparticles for fast and selective separation of lanthanum(III). Microchim Acta 182, 1747–1755 (2015). https://doi.org/10.1007/s00604-015-1496-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1496-6

Keywords

Navigation