Skip to main content
Log in

An Analytical Model for Fully Grouted Rockbolts with Consideration of the Pre- and Post-yielding Behavior

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

For rockbolts subjected to tensile loads, there exists a unique local slip–strain relationship as well as a unique bond–slip relationship between rockbolts and rock mass. An analytical model is presented in this study for fully grouted rockbolts under tension, based on the slip–strain relationship of rockbolts. This analytical model takes into account the trilinear bond–slip relationship and the pre- and post-yielding characteristics of the rockbolt material. The reliability and accuracy of the proposed analytical model are verified by experimental pullout tests. Verification studies show that the proposed model is capable of representing the strain and stress distributions of the rockbolts, and the overall load–displacement relationships of rockbolts before and after yielding. Additionally, the model has successfully captured the decoupling mechanism at the bolt–rock interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(\varepsilon_{\text{y}}\) :

Bolt yield strain

\(\varepsilon_{\text{sh}}\) :

Strain at the onset of hardening phase

\(f_{\text{u}}\) :

Yield and tensile strengths of the bolt

\(f_{\text{y}}\) :

Tensile strengths of the bolt

\(\sigma_{\text{y}}\) :

Bolt yield strength

\(\tau\) :

Shear stress at bolt–rock interface

S:

Relative slip between the bolt and rock

\(\tau_{\text{f}}\) :

Peak shear bond stress at the bolt–rock interface

\(\tau_{\text{r}}\) :

Residual shear stress at the bolt–rock interface

\(s_{\text{n}}\) :

Non-dimensional (normalized) slip

\(S\) :

Local slip of the bolt

D :

Bolt diameter

\(\varepsilon_{\text{s}}\) :

Bolt axial strain

\(f_{c}^{\prime }\) :

Concrete compressive strength

\(l_{\text{seg}}\) :

Segment length of the bolt

\(E_{\text{b}}\) :

Bolt’s Young’s modulus

\(E_{\text{e}}\) :

Young’s modulus in the elastic stage

\(E_{\text{r}}\) :

Young’s modulus in the hardening stage

\(\tau (n)\) :

Interfacial shear bond stress between the nth and (n − 1)th bolt segments

\(\varepsilon_{n}\) :

Strain for the nth segment

P :

Pullout load applied on the bolt

References

  • Aziz N (2004) Bolt surface profiles—an important parameter in load transfer capacity appraisal. In: International symposium on ground support, Perth, Western Australia, pp 221–231

  • Benmokrane B, Chennouf A, Mitri HS (1995) Laboratory evaluation of cement-based grouts and grouted rock anchors. Int J Rock Mech Min Sci Geomech Abstr 32:633–642

    Article  Google Scholar 

  • Chen Y, Li CC (2015) Performance of fully encapsulated rebar bolts and D-bolts under combined pull-and-shear loading. Tunn Undergr Space Technol 45:99–106. doi:10.1016/j.tust.2014.09.008

    Article  Google Scholar 

  • Chen J, Saydam S, Hagan PC (2015) An analytical model of the load transfer behavior of fully grouted cable bolts. 101. Constr Build Mater 101(Part 1):1006–1015. doi:10.1016/j.conbuildmat.2015.10.099

    Article  Google Scholar 

  • Chen J, Hagan PC, Saydam S (2016) Parametric study on the axial performance of a fully grouted cable bolt with a new pull-out test. Int J Min Sci Technol 26:53–58. doi:10.1016/j.ijmst.2015.11.010

    Article  Google Scholar 

  • Cheng HT (2016) Difference solution of passive bolts reinforcement around a circular opening in elastoplastic rock mass. Int J Rock Mech Min Sci 81:28–38. doi:10.1016/j.ijrmms.2015.11.001

    Google Scholar 

  • Deb D, Das KC (2011a) Modelling of fully grouted rock bolt based on enriched finite element method. Int J Rock Mech Min Sci 48:283–293. doi:10.1016/j.ijrmms.2010.11.015

    Article  Google Scholar 

  • Deb D, Das KC (2011b) Enriched finite element procedures for analyzing decoupled bolts installed in rock mass. Int J Numer Anal Methods Geomech 35:1636–1655. doi:10.1002/nag.970

    Article  Google Scholar 

  • Farmer IW (1975) Stress distribution along a resin grouted rock anchor. Int J Rock Mech Min Sci Geomech Abstr 12:347–351

    Article  Google Scholar 

  • He L, An XM, Zhao ZY (2014) Fully grouted rock bolts: an analytical investigation. Rock Mech Rock Eng 48:1181–1196. doi:10.1007/s00603-014-0610-0

    Article  Google Scholar 

  • Ivanović A, Neilson RD (2009) Modelling of debonding along the fixed anchor length. Int J Rock Mech Min Sci 46:699–707

    Article  Google Scholar 

  • Li X (2007) Finite element modeling of skewed reinforced concrete. Auburn University, Auburn

    Google Scholar 

  • Li C, Stillborg B (1999) Analytical models for rock bolts. Int J Rock Mech Min Sci 36:1013–1029

    Article  Google Scholar 

  • Liang X (2013) An investigation of bond–slip behavior of reinforcing steel subjected to inelastic strains. Graduate theses and dissertations, Paper 13390

  • Liu B, Li D, Duan Y (2011) Experimental study of bond–slip relationship between bolt and mortar and theoretical solution to failure process. Chin J Rock Mechan Eng 30:2790–2797

    Google Scholar 

  • Ma S, Nemcik J, Aziz N (2013) An analytical model of fully grouted rock bolts subjected to tensile load. Constr Build Mater 49:519–526. doi:10.1016/j.conbuildmat.2013.08.084

    Article  Google Scholar 

  • Ma S, Nemcik J, Aziz N, Zhang Z (2014) Analytical model for rock bolts reaching free end slip. Constr Build Mater 57:30–37. doi:10.1016/j.conbuildmat.2014.01.057

    Article  Google Scholar 

  • Ma S, Nemcik J, Aziz N, Zhang Z (2016a) Numerical modeling of fully grouted rockbolts reaching free-end slip. Int J Geomech. doi:10.1061/(ASCE)GM.1943-5622.0000484

  • Ma S, Zhao Z, Nie W, Gui Y (2016b) A numerical model of fully grouted bolts considering the tri-linear shear bond–slip model. Tunn Undergr Space Technol 54:73–80. doi:10.1016/j.tust.2016.01.033

    Article  Google Scholar 

  • Martin LB, Hassen FH, Tijani M, Noiret AA (2011a) new experimental and analytical study of fully grouted rockbolts. In: 45th US rock mechanics/geomechanics symposium, San Francisco, USA, ARMA 11-242

  • Martin LB, Tijani M, Hadj-Hassen F (2011b) A new analytical solution to the mechanical behaviour of fully grouted rockbolts subjected to pull-out tests. Constr Build Mater 25:749–755

    Article  Google Scholar 

  • Nemcik J, Ma S, Aziz N, Ren T, Geng X (2014) Numerical modelling of failure propagation in fully grouted rock bolts subjected to tensile load. Int J Rock Mech Min Sci 71:293–300

    Google Scholar 

  • Nie W, Zhao ZY, Ning YJ, Guo W (2014a) Numerical studies on rockbolts mechanism using 2D discontinuous deformation analysis. Tunn Undergr Space Technol 41:223–233. doi:10.1016/j.tust.2014.01.001

    Article  Google Scholar 

  • Nie W, Zhao ZY, Ning YJ, Sun JP (2014b) Development of rock bolt elements in two-dimensional discontinuous deformation analysis. Rock Mech Rock Eng 47:2157–2170. doi:10.1007/s00603-013-0525-1

    Article  Google Scholar 

  • Ren FF, Yang ZJ, Chen JF, Chen WW (2010) An analytical analysis of the full-range behaviour of grouted rockbolts based on a tri-linear bond–slip model. Constr Build Mater 24:361–370

    Article  Google Scholar 

  • Rong G, Zhu H, Zhou C (2004) Testing study on working mechanism of fully grouted bolts of thread steel and smooth steel. Chin J Rock Mech Eng 23:469–475

    Google Scholar 

  • Shima H, Chou L, Okamura H (1987) Mirco and macro models for bond in reinforced concrete. J Fac Eng Univ Tokyo 39:133–194

    Google Scholar 

  • Soltani M, Maekawa K (2008) Path-dependent mechanical model for deformed reinforcing bars at RC interface under coupled cyclic shear and pullout tension. Eng Struct 30:1079–1091. doi:10.1016/j.engstruct.2007.06.013

    Article  Google Scholar 

  • Wei W, Jiang Q, Peng J (2016) New rock bolt model and numerical implementation in numerical manifold method. Int J Geomech. doi:10.1061/(ASCE)GM.1943-5622.0000669

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Fund of State Key Laboratory of Geohazard Prevention and Geoenviroment Protection under Grant No. SKLGP2017K007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Zhao, Z., Nie, W. et al. An Analytical Model for Fully Grouted Rockbolts with Consideration of the Pre- and Post-yielding Behavior. Rock Mech Rock Eng 50, 3019–3028 (2017). https://doi.org/10.1007/s00603-017-1272-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1272-5

Keywords

Navigation