Skip to main content
Log in

Resonances in the R-Matrix Method

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The R-matrix method is widely used in scattering calculations. We present a simple extension that provides the energy and width of resonances by computing eigenvalues of a complex symmetric matrix. We briefly present the method and show some typical applications in two- and three-body systems. In particular, we discuss in more detail the \(^6\)He and \(^6\)Be three-body nuclei (\(\alpha +n+n\) and \(\alpha +p+p\), respectively). We show that large bases are necessary to reach convergence of the bound-state or resonance properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. V.I. Kukulin, V.M. Krasnopol’sky, J. Horǎćek, Theory of Resonances (Principles and Applications, Kluwer Academic, Dordrecht, 1989)

    Book  Google Scholar 

  2. I. Tanihata, H. Savajols, R. Kanungo, Prog. Part. Nucl. Phys. 68, 215 (2013). https://doi.org/10.1016/j.ppnp.2012.07.001

    Article  ADS  CAS  Google Scholar 

  3. B. Bransden, C. Joachain, Physics of Atoms and Molecules (Pearson Education, Prentice Hall, Englewood Cliffs, 2003)

    Google Scholar 

  4. J. Aguilar, J.M. Combes, Commun. Math. Phys. 22, 269 (1971). https://doi.org/10.1007/BF01877510

    Article  ADS  Google Scholar 

  5. Y.K. Ho, Phys. Rep. 99, 1 (1983). https://doi.org/10.1016/0370-1573(83)90112-6

    Article  ADS  CAS  Google Scholar 

  6. C.H. Maier, L.S. Cederbaum, W. Domcke, J. Phys. B 13(4), L119 (1980). https://doi.org/10.1088/0022-3700/13/i=4/a=001

  7. S.G. Zhou, J. Meng, E.G. Zhao, J. Phys. B 42(24), 245001 (2009). https://doi.org/10.1088/0953-4075/42/24/245001

    Article  ADS  CAS  Google Scholar 

  8. N. Tanaka, Y. Suzuki, K. Varga, R.G. Lovas, Phys. Rev. C 59, 1391 (1999). https://doi.org/10.1103/PhysRevC.59.1391

    Article  ADS  CAS  Google Scholar 

  9. A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 30, 257 (1958). https://doi.org/10.1103/RevModPhys.30.257

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Burke, R-Matrix Theory of Atomic Collisions, Application to Atomic, Molecular and Optical Processes, Springer Series on Atomic, Optical, and Plasma Physics (Springer, Cham, 2011)

    Google Scholar 

  11. P. Descouvemont, D. Baye, Rep. Prog. Phys. 73, 036301 (2010). https://doi.org/10.1088/0034-4885/73/3/036301

    Article  ADS  CAS  Google Scholar 

  12. J. Tennyson, Phys. Rep. 491(2), 29 (2010). https://doi.org/10.1016/j.physrep.2010.02.001

    Article  ADS  CAS  Google Scholar 

  13. C. Bloch, Nucl. Phys. 4, 503 (1957). https://doi.org/10.1016/0029-5582(87)90058-7

    Article  Google Scholar 

  14. B.I. Schneider, Phys. Rev. A 24, 1 (1981). https://doi.org/10.1103/PhysRevA.24.1

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. P. Descouvemont, M. Vincke, Phys. Rev. A 42, 3835 (1990). https://doi.org/10.1103/PhysRevA.42.3835

    Article  ADS  CAS  PubMed  Google Scholar 

  16. C.D. Lin, Phys. Rep. 257, 1 (1995). https://doi.org/10.1016/0370-1573(94)00094-J

    Article  ADS  CAS  Google Scholar 

  17. L.E. Marcucci, J. Dohet-Eraly, L. Girlanda, A. Gnech, A. Kievsky, M. Viviani, Front. Phys. 8, 69 (2020). https://doi.org/10.3389/fphy.2020.00069

    Article  Google Scholar 

  18. V. Vasilevsky, A.V. Nesterov, F. Arickx, J. Broeckhove, Phys. Rev. C 63, 034607 (2001). https://doi.org/10.1103/PhysRevC.63.034607

    Article  ADS  CAS  Google Scholar 

  19. J.R. Taylor, Scattering Theory Wiley (Wiley, New York, 1972)

    Google Scholar 

  20. C. Joachain, Quantum Collision Theory (Elsevier Science) (1983)

  21. P. Descouvemont, E.M. Tursunov, D. Baye, Nucl. Phys. A 765, 370 (2006). https://doi.org/10.1016/j.nuclphysa.2005.11.010

    Article  ADS  CAS  Google Scholar 

  22. R.F. Barrett, B.A. Robson, W. Tobocman, Rev. Mod. Phys. 55, 155 (1983). https://doi.org/10.1103/RevModPhys.55.155

    Article  ADS  CAS  Google Scholar 

  23. J.M. Blatt, L.C. Biedenharn, Rev. Mod. Phys. 24, 258 (1952). https://doi.org/10.1103/RevModPhys.24.258

    Article  ADS  CAS  Google Scholar 

  24. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988). https://doi.org/10.1016/0167-7977(88)90005-6

    Article  CAS  Google Scholar 

  25. D. Baye, P. Descouvemont, Nucl. Phys. A 407, 77 (1983). https://doi.org/10.1016/0375-9474(83)90309-3

    Article  ADS  Google Scholar 

  26. D. Baye, Phys. Rep. 565, 1 (2015). https://doi.org/10.1016/j.physrep.2014.11.006

    Article  ADS  MathSciNet  Google Scholar 

  27. D. Baye, P. Descouvemont, Ann. Phys. 165, 115 (1985). https://doi.org/10.1016/S0003-4916(85)80007-5

    Article  ADS  CAS  Google Scholar 

  28. NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/. F. W. J Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds

  29. A.M. Mukhamedzhanov, L.D. Blokhintsev, Eur. Phys. J. A 58, 29 (2022). https://doi.org/10.1140/epja/s10050-021-00651-0

    Article  ADS  CAS  Google Scholar 

  30. I. Thompson, A. Barnett, Comput. Phys. Commun. 36, 363 (1985). https://doi.org/10.1016/0010-4655(85)90025-6

    Article  ADS  CAS  Google Scholar 

  31. A. Ruhe, SIAM J. Numer. Anal. 10(4), 674 (1973). http://www.jstor.org/stable/2156278

  32. M. Hesse, J. Roland, D. Baye, Nucl. Phys. A 709, 184 (2002). https://doi.org/10.1016/S0375-9474(02)01040-0

    Article  ADS  Google Scholar 

  33. L. Malegat, J. Phys. B 27(21), L691 (1994). https://doi.org/10.1088/0953-4075/27/21/001

    Article  ADS  CAS  Google Scholar 

  34. M. Hesse, J.M. Sparenberg, F. Van Raemdonck, D. Baye, Nucl. Phys. A 640, 37 (1998). https://doi.org/10.1016/S0375-9474(98)00435-7

    Article  ADS  Google Scholar 

  35. M. Hesse, J. Roland, D. Baye, Nucl. Phys. A 709, 184 (2002). https://doi.org/10.1016/S0375-9474(02)01040-0

    Article  ADS  Google Scholar 

  36. T. Druet, D. Baye, P. Descouvemont, J.M. Sparenberg, Nucl. Phys. A 845, 88 (2010). https://doi.org/10.1016/j.nuclphysa.2010.05.060

    Article  ADS  CAS  Google Scholar 

  37. P. Descouvemont, Comput. Phys. Commun. 200, 199 (2016). https://doi.org/10.1016/j.cpc.2015.10.015

    Article  ADS  CAS  Google Scholar 

  38. J. Lei, P. Descouvemont, Phys. Rev. C 102, 014608 (2020). https://doi.org/10.1103/PhysRevC.102.014608

    Article  ADS  CAS  Google Scholar 

  39. A. Csótó, B. Gyarmati, A.T. Kruppa, K.F. Pál, N. Moiseyev, Phys. Rev. A 41, 3469 (1990). https://doi.org/10.1103/PhysRevA.41.3469

    Article  ADS  PubMed  Google Scholar 

  40. H. Kanada, T. Kaneko, S. Nagata, M. Nomoto, Prog. Theor. Phys. 61, 1327 (1979). https://doi.org/10.1143/PTP.61.1327

    Article  ADS  CAS  Google Scholar 

  41. D.R. Tilley, C.M. Chevesa, J.L. Godwin, G.M. Hale, H.M. Hofmann, J.H. Kelley, C.G. Sheu, H.R. Weller, Nucl. Phys. A 708, 3 (2002). https://doi.org/10.1016/S0375-9474(02)00597-3

    Article  ADS  Google Scholar 

  42. S.T. Ma, Rev. Mod. Phys. 25, 853 (1953). https://doi.org/10.1103/RevModPhys.25.853

    Article  ADS  CAS  Google Scholar 

  43. D.R. Thompson, M. LeMere, Y.C. Tang, Nucl. Phys. A 286, 53 (1977). https://doi.org/10.1016/0375-9474(77)90007-0

    Article  ADS  Google Scholar 

  44. H.A. Bethe, Phys. Rev. 76, 38 (1949). https://doi.org/10.1103/PhysRev.76.38

    Article  ADS  CAS  Google Scholar 

  45. D. Baye, M. Hesse, R. Kamouni, Phys. Rev. C 63, 014605 (2000). https://doi.org/10.1103/PhysRevC.63.014605

    Article  ADS  Google Scholar 

  46. P. Descouvemont, E. Pinilla, D. Baye, Prog. Theor. Phys. Suppl. 196, 1 (2012). https://doi.org/10.1143/PTPS.196.1

    Article  ADS  CAS  Google Scholar 

  47. P. Descouvemont, C. Daniel, D. Baye, Phys. Rev. C 67, 044309 (2003). https://doi.org/10.1103/PhysRevC.67.044309

    Article  ADS  CAS  Google Scholar 

  48. A. Damman, P. Descouvemont, Phys. Rev. C 80, 044310 (2009). https://doi.org/10.1103/PhysRevC.80.044310

    Article  ADS  CAS  Google Scholar 

  49. I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, N. Takahashi, Phys. Rev. Lett. 55, 2676 (1985). https://doi.org/10.1103/PhysRevLett.55.2676

    Article  ADS  CAS  PubMed  Google Scholar 

  50. M.V. Zhukov, B.V. Danilin, D.V. Fedorov, J.M. Bang, I.J. Thompson, J.S. Vaagen, Phys. Rep. 231, 151 (1993). https://doi.org/10.1016/0370-1573(93)90141-Y

    Article  ADS  CAS  Google Scholar 

  51. I.J. Thompson, F.M. Nunes, B.V. Danilin, Comput. Phys. Commun. 161, 87 (2004). https://doi.org/10.1016/j.cpc.2005.06.001

    Article  ADS  CAS  Google Scholar 

  52. P. Descouvemont, J. Phys. G 37, 064010 (2010). https://doi.org/10.1088/0954-3899/37/6/064010

    Article  ADS  CAS  Google Scholar 

  53. V.I. Kukulin, V.M. Krasnopol’sky, J. Phys. G 3, 795 (1977). https://doi.org/10.1088/0305-4616/3/6/011

    Article  ADS  CAS  Google Scholar 

  54. D. Baye, Phys. Rev. Lett. 58, 2738 (1987). https://doi.org/10.1103/PhysRevLett.58.2738

    Article  ADS  CAS  PubMed  Google Scholar 

  55. I.J. Thompson, B.V. Danilin, V.D. Efros, J.S. Vaagen, J.M. Bang, M.V. Zhukov, Phys. Rev. C 61, 024318 (2000). https://doi.org/10.1103/PhysRevC.61.024318

    Article  ADS  Google Scholar 

  56. R. Yarmukhamedov, D. Baye, C. Leclercq-Willain, Nucl. Phys. A 705(3), 335 (2002). https://doi.org/10.1016/S0375-9474(02)00672-3

    Article  ADS  Google Scholar 

  57. L.V. Grigorenko, T.D. Wiser, K. Mercurio, R.J. Charity, R. Shane, L.G. Sobotka, J.M. Elson, A.H. Wuosmaa, A. Banu, M. McCleskey, L. Trache, R.E. Tribble, M.V. Zhukov, Phys. Rev. C 80(3), 034602 (2009). https://doi.org/10.1103/PhysRevC.80.034602

    Article  ADS  CAS  Google Scholar 

  58. J. Dohet-Eraly, P. Navrátil, S. Quaglioni, W. Horiuchi, G. Hupin, F. Raimondi, Phys. Lett. B 757, 430 (2016). https://doi.org/10.1016/j.physletb.2016.04.021

    Article  ADS  CAS  Google Scholar 

  59. A. Calci, P. Navrátil, R. Roth, J. Dohet-Eraly, S. Quaglioni, G. Hupin, Phys. Rev. Lett. 117, 242501 (2016). https://doi.org/10.1103/PhysRevLett.117.242501

    Article  ADS  PubMed  Google Scholar 

  60. A. Kumar, R. Kanungo, A. Calci, P. Navrátil, A. Sanetullaev, M. Alcorta, V. Bildstein, G. Christian, B. Davids, J. Dohet-Eraly, J. Fallis, A.T. Gallant, G. Hackman, B. Hadinia, G. Hupin, S. Ishimoto, R. Krücken, A.T. Laffoley, J. Lighthall, D. Miller, S. Quaglioni, J.S. Randhawa, E.T. Rand, A. Rojas, R. Roth, A. Shotter, J. Tanaka, I. Tanihata, C. Unsworth, Phys. Rev. Lett. 118, 262502 (2017). https://doi.org/10.1103/PhysRevLett.118.262502

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fonds de la Recherche Scientifique - FNRS under Grant Numbers 4.45.10.08 and J.0065.22. It benefited from computational resources made available on the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement No. 1117545.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Pierre Descouvemont.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Descouvemont, P., Dohet-Eraly, J. Resonances in the R-Matrix Method. Few-Body Syst 65, 9 (2024). https://doi.org/10.1007/s00601-023-01876-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01876-z

Navigation