Skip to main content

Advertisement

Log in

Nuclear Forces for Precision Nuclear Physics: A Collection of Perspectives

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

This is a collection of perspective pieces contributed by the participants of the Institute for Nuclear Theory’s Program on Nuclear Physics for Precision Nuclear Physics which was held virtually from April 19 to May 7, 2021. The collection represents the reflections of a vibrant and engaged community of researchers on the status of theoretical research in low-energy nuclear physics, the challenges ahead, and new ideas and strategies to make progress in nuclear structure and reaction physics, effective field theory, lattice QCD, quantum information, and quantum computing. The contributed pieces solely reflect the perspectives of the respective authors and do not represent the viewpoints of the Institute for Nuclear theory or the organizers of the program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We use the term “local” to mean interactions whose interaction kernel is diagonal with respect to particle positions.

  2. Eigenvector continuation is a special case of a model order reduction (MOR) formalism for parameterized systems, which has been studied for some time in applied mathematics. For a general overview of the MOR literature and applications, we refer the reader to Ref. [111].

  3. Applications of emulators are not limited to statistical analyses. For instance, they have also been used as interpolants and extrapolants in solving chaotic three-body problems [119] and in quantum molecular calculations [120].

  4. https://sites.google.com/uw.edu/int/programs/21-1b.

  5. The variational approaches (e.g., Refs. [137, 138]) also work for fixed scattering angles. This suggests emulators can be constructed without using a partial-wave decomposition.

  6. There exists work on Kohn-type variational approaches in this kinematic region, see e.g., Refs. [139, 140]

  7. One difficulty in full three-body calculations is the implementation of the Coulomb interaction with large Sommerfeld parameters (see, e.g., Ref. [141]). It will be interesting to study the manifestation of this difficulty in the EC emulators.

  8. These orders are computed counting powers of \(4\pi \) as Weinberg did [161], cf. the final bullet in this section.

  9. Naively, integrating out \(\Delta \)-resonance contributions to the two-pion exchange potential is expected to induce large contributions to \(NN\) contact interactions governed by the scale \(m_\Delta - m_N\). However, a close inspection of the corresponding analytical expressions in Refs. [171, 222] suggests that the scale is actually given by \(2(m_\Delta - m_N)\), which is numerically already close to \(\Lambda _b\).

  10. The exact independence on the choice of renormalization conditions is a (nice) artifact of DR. It does not hold when using more general regularization schemes that keep track of power-law divergences.

  11. The unrealistic choice of the toy model is dictated by our wish to have an analytically solvable example. The realistic case of \(NN\) scattering by the OPE potential in chiral EFT is conceptually similar to the considered example but requires numerical treatment.

  12. To see this, one can regard the underlying interaction to be just \(V_L(\vec p,\vec q \, ) + C\), regularized with a sharp cutoff \(\Lambda = \Lambda _b\). Then, the amplitude in Eq. (11.6) coincides with the exact result for this underlying model up to \(\mathcal {O} (\Lambda _b^{-2})\) terms in the denominator.

  13. The subscript \(\mathrm df\) stands for “divergence-free”, referring to the fact that simple pole singularities have been removed.

  14. https://www.usqcd.org/.

  15. https://www.scidac.gov/.

  16. https://www.usqcd.org/lqcd/WBS/.

  17. https://sites.google.com/uw.edu/int/home.

  18. https://www.ectstar.eu/.

  19. https://iqus.uw.edu/.

  20. https://www.nobelprize.org/prizes/physics/1956/summary/

  21. https://www.ibm.com/quantum-computing/.

  22. https://quantumai.google.

  23. https://www.rigetti.com.

  24. https://www.ionq.com.

  25. https://www.honeywell.com/us/en/company/quantum.

  26. https://psiquantum.com.

  27. https://www.congress.gov/bill/115th-congress/house-bill/6227.

  28. https://www.quantum.gov.

  29. For further details see https://qscience.org and follow QSC at @QuantumSciCtr (on twitter).

  30. https://www.top500.org/statistics/perfdevel/.

  31. See, for example https://www.qureca.com/overview-on-quantum-initiatives-worldwide-update-mid-2021/.

  32. https://thequantuminsider.com/2021/11/17/q-exa-collaborative-iqm-quantum-computer-will-be-first-quantum-system-to-be-integrated-into-a-hpc-supercomputer/.

References

  1. S. König, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, Nuclear physics around the unitarity limit. Phys. Rev. Lett. (2017). https://doi.org/10.1103/PhysRevLett.118.202501

    Article  Google Scholar 

  2. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Renormalization of the three-body system with short range interactions. Phys. Rev. Lett. 82, 463–467 (1999). https://doi.org/10.1103/PhysRevLett.82.463arXiv: nucl-th/9809025

  3. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Effective theory of the triton. Nucl. Phys. A 676, 357–370 (2000). https://doi.org/10.1016/S0375-9474(00)00205-0arXiv: nucl-th/9906032

    Article  ADS  Google Scholar 

  4. L. Platter, H.-W. Hammer, U.-G. Meißner, On the correlation between the binding energies of the triton and the alpha-particle. Phys. Lett. B 607, 254–258 (2005). https://doi.org/10.1016/j.physletb.2004.12.068arXiv: nucl-th/0409040

    Article  ADS  Google Scholar 

  5. H.-W. Hammer, L. Platter, Efimov physics from a renormalization group perspective. Philos. Trans. R. Soc. Lond. A 369, 2679 (2011). https://doi.org/10.1098/rsta.2011.0001arXiv: 1102.3789 [nucl-th]

  6. M. Gattobigio, A. Kievsky, M. Viviani, Embedding nuclear physics inside the unitary-limit window. Phys. Rev. C 100(3), 034004 (2019). https://doi.org/10.1103/PhysRevC.100.034004arXiv: 1903.08900 [nucl-th]

  7. V. Efimov, Energy levels arising form the resonant two-body forces in a three-body system. Phys. Lett. B 33, 563–564 (1970). https://doi.org/10.1016/0370-2693(70)90349-7

    Article  ADS  Google Scholar 

  8. G. Rupak, A. Vaghani, R. Higa, U. van Kolck, Fate of the neutron-deuteron virtual state as an Efimov level. Phys. Lett. B 791, 414–419 (2019). https://doi.org/10.1016/j.physletb.2018.08.051arXiv: 1806.01999 [nucl-th]

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Kievsky, M. Gattobigio, L. Girlanda, M. Viviani, Efimov physics and connections to nuclear physics. Ann. Rev. Nucl. Part. Sci. 71, 465–490 (2021). https://doi.org/10.1146/annurev-nucl-102419-032845arXiv: 2102.13504 [nucl-th]

  10. D.B. Kaplan, M.J. Savage, The Spin flavor dependence of nuclear forces from large n QCD. Phys. Lett. B 365, 244–251 (1996). https://doi.org/10.1016/0370-2693(95)01277-XarXiv: hep-ph/9509371

    Article  ADS  Google Scholar 

  11. D.B. Kaplan, A.V. Manohar, The Nucleon-nucleon potential in the 1/N(c) expansion. Phys. Rev. C 56, 76–83 (1997). https://doi.org/10.1103/PhysRevC.56.76arXiv: nucl-th/9612021

    Article  ADS  Google Scholar 

  12. T.D. Cohen, B.A. Gelman, Nucleon-nucleon scattering observables in large N(c) QCD. Phys. Lett. B 540, 227–232 (2002). https://doi.org/10.1016/S0370-2693(02)02182-2arXiv: nucl-th/0202036

    Article  ADS  Google Scholar 

  13. T.D. Cohen, Resolving the large N(c) nuclear potential puzzle. Phys. Rev. C 66, 064003 (2002). https://doi.org/10.1103/PhysRevC.66.064003arXiv: nucl-th/0209072

    Article  ADS  Google Scholar 

  14. A. Calle Cordon, E. Ruiz Arriola, Serber symmetry, large N(c) and Yukawa-like one boson exchange potentials. Phys. Rev. C (2009). https://doi.org/10.1103/PhysRevC.80.014002arXiv: 0904.0421 [nucl-th]

  15. D. Lee et al., Hidden spin-isospin exchange symmetry. Phys. Rev. Lett. 127(6), 062501 (2021). https://doi.org/10.1103/PhysRevLett.127.062501arXiv: 2010.09420 [nucl-th]

  16. D.R. Phillips, C. Schat, Three-nucleon forces in the 1/Nc expansion. Phys. Rev. C 88(3), 034002 (2013). https://doi.org/10.1103/PhysRevC.88.034002arXiv: 1307.6274 [nucl-th]

  17. E. Wigner, On the consequences of the symmetry of the nuclear Hamiltonian on the spectroscopy of nuclei. Phys. Rev. 51, 106–119 (1937). https://doi.org/10.1103/PhysRev.51.106

  18. T. Mehen, I.W. Stewart, M.B. Wise, Wigner symmetry in the limit of large scattering lengths. Phys. Rev. Lett. 83, 931–934 (1999). https://doi.org/10.1103/PhysRevLett.83.931arXiv: hep-ph/9902370

    Article  ADS  Google Scholar 

  19. J. Vanasse, D.R. Phillips, Three-nucleon bound states and the Wigner-SU(4) limit. Few Body Syst. 58(2), 26 (2017). https://doi.org/10.1007/s00601-016-1173-2arXiv: 1607.08585 [nucl-th]

    Article  ADS  Google Scholar 

  20. M. R. Schindler, R.P. Springer, J. Vanasse. Large-\(N_c\) limit reduces the number of independent few-body parity-violating low-energy constants in pionless effective field theory. Phys. Rev. C 93(2) (2016). [Erratum: Phys. Rev. C 97, 059901 (2018)], p. 025502. https://doi.org/10.1103/PhysRevC.93.025502. arXiv: 1510.07598 [nucl-th]

  21. M.R. Schindler, H. Singh, R.P. Springer, Large-\(N_c\) relationships among two-derivative Pionless effective field theory couplings. Phys. Rev. C 98(4), 044001 (2018). https://doi.org/10.1103/PhysRevC.98.044001arXiv: 1805.06056 [nucl-th]

  22. S.T. Nguyen, M.R. Schindler, R.P. Springer, J. Vanasse, Large-\(N_c\) and renormalization group constraints on parity-violating low-energy coefficients for three-derivative operators in pionless effective field theory. Phys. Rev. C 103(5), 054004 (2021). https://doi.org/10.1103/PhysRevC.103.054004arXiv: 2012.02180 [hep-ph]

  23. S.R. Beane, D.B. Kaplan, N. Klco, M.J. Savage, Entanglement suppression and emergent symmetries of strong interactions. Phys. Rev. Lett. 122(10), 102001 (2019). https://doi.org/10.1103/PhysRevLett.122.102001arXiv: 1812.03138 [nucl-th]

  24. I. Low, T. Mehen, Symmetry from entanglement suppression. Phys. Rev. D 104(7), 074014 (2021). https://doi.org/10.1103/PhysRevD.104.074014arXiv: 2104.10835 [hep-th]

  25. H.-W. Hammer, S. König, U. van Kolck, Nuclear effective field theory: status and perspectives. Rev. Mod. Phys. 92(2), 025004 (2020). https://doi.org/10.1103/RevModPhys.92.025004arXiv: 1906.12122 [nucl-th]

  26. A. Kievsky, M. Viviani, M. Gattobigio, L. Girlanda, Implications of Efimov physics for the description of three and four nucleons in chiral effective field theory. Phys. Rev. C 95(2), 024001 (2017). https://doi.org/10.1103/PhysRevC.95.024001arXiv: 1610.09858 [nucl-th]

  27. U. van Kolck, Few nucleon forces from chiral Lagrangians. Phys. Rev. C 49, 2932–2941 (1994). https://doi.org/10.1103/PhysRevC.49.2932

    Article  ADS  Google Scholar 

  28. E. Epelbaum, A. Nogga, W. Gloeckle, H. Kamada, U.-G. Meißner, H. Witala, Three nucleon forces from chiral effective field theory. Phys. Rev. C 66, 064001 (2002). https://doi.org/10.1103/PhysRevC.66.064001arXiv: nucl-th/0208023

  29. S. Elhatisari et al., Nuclear binding near a quantum phase transition. Phys. Rev. Lett. 117(13), 132501 (2016). https://doi.org/10.1103/PhysRevLett.117.132501arXiv: 1602.04539 [nucl-th]

  30. A. Rokash, E. Epelbaum, H. Krebs, D. Lee, Effective forces between quantum bound states. Phys. Rev. Lett. 118(23), 232502 (2017). https://doi.org/10.1103/PhysRevLett.118.232502arXiv: 1612.08004 [nucl-th]

  31. Y. Kanada-En’yo, D. Lee, Effective interactions between nuclear clusters. Phys. Rev. C 103(2), 024318 (2021). https://doi.org/10.1103/PhysRevC.103.024318arXiv: 2008.01867 [nucl-th]

  32. L. Contessi, A. Lovato, F. Pederiva, A. Roggero, J. Kirscher, U. van Kolck, Ground-state properties of \(^4{\rm He}\) and \(^{\rm 16}\)O extrapolated from lattice QCD with pionless EFT. Phys. Lett. B 772, 839–848 (2017). https://doi.org/10.1016/j.physletb.2017.07.048arXiv: 1701.06516 [nucl-th]

    Article  ADS  Google Scholar 

  33. B.-N. Lu, N. Li, S. Elhatisari, D. Lee, E. Epelbaum, U.-G. Meißner, Essential elements for nuclear binding. Phys. Lett. B 797, 134863 (2019). https://doi.org/10.1016/j.physletb.2019.134863arXiv: 1812.10928 [nucl-th]

  34. D. Frame, R. He, I. Ipsen, D. Lee, D. Lee, E. Rrapaj, Eigenvector continuation with subspace learning. Phys. Rev. Lett. 121(3), 032501 (2018). https://doi.org/10.1103/PhysRevLett.121.032501arXiv: 1711.07090 [nucl-th]

  35. S. Köing, A. Ekström, K. Hebeler, D. Lee, A. Schwenk, Eigenvector continuation as an efficient and accurate emulator for uncertainty quantification. Phys. Lett. B 810, 135814 (2020). https://doi.org/10.1016/j.physletb.2020.135814arXiv: 1909.08446 [nucl-th]

  36. A. Ekström, G. Hagen, Global sensitivity analysis of bulk properties of an atomic nucleus. Phys. Rev. Lett. 123(25), 252501 (2019). https://doi.org/10.1103/PhysRevLett.123.252501arXiv: 1910.02922 [nucl-th]

  37. R.J. Furnstahl, A.J. Garcia, P.J. Millican, X. Zhang, Efficient emulators for scattering using eigenvector continuation. Phys. Lett. B 809, 135719 (2020). https://doi.org/10.1016/j.physletb.2020.135719arXiv: 2007.03635 [nucl-th]

  38. J.A. Melendez, C. Drischler, A.J. Garcia, R.J. Furnstahl, X. Zhang, Fast and accurate emulation of two-body scattering observables without wave functions. Phys. Lett. B 821, 136608136608 (2021). https://doi.org/10.1016/j.physletb.2021.136608arXiv: 2106.15608 [nucl-th]

  39. A. Sarkar, D. Lee, Convergence of Eigenvector continuation. Phys. Rev. Lett. 126(3), 032501 (2021). https://doi.org/10.1103/PhysRevLett.126.032501arXiv: 2004.07651 [nucl-th]

  40. S. Wesolowski, I. Svensson, A. Ekström, C. Forssén, R.J. Furnstahl, J.A. Melendez, D.R. Phillips, Rigorous constraints on three-nucleon forces in chiral effective field theory from fast and accurate calculations of few-body observables. Phys. Rev. C 104(6), 064001 (2021). https://doi.org/10.1103/PhysRevC.104.064001arXiv: 2104.04441 [nucl-th]

  41. P. Navrátil, Local three-nucleon interaction from chiral effective field theory. Few Body Syst. 41, 117–140 (2007). https://doi.org/10.1007/s00601-007-0193-3arXiv: 0707.4680 [nucl-th]

    Article  ADS  Google Scholar 

  42. S. Binder, J. Langhammer, A. Calci, R. Roth, Ab initio path to heavy nuclei. Phys. Lett. B 736, 119–123 (2014). https://doi.org/10.1016/j.physletb.2014.07.010arXiv: 1312.5685 [nucl-th]

  43. V. Lapoux, V. Somà, C. Barbieri, H. Hergert, J.D. Holt, S.R. Stroberg, Radii and binding energies in oxygen isotopes: a challenge for nuclear forces. Phys. Rev. Lett. (2016). https://doi.org/10.1103/PhysRevLett.117.052501arXiv: 1605.07885 [nucl-ex]

  44. T. Hüther, K. Vobig, K. Hebeler, R. Machleidt, R. Roth, Family of chiral two- plus three-nucleon interactions for accurate nuclear structure studies. Phys. Lett. B 808, 135651 (2020). https://doi.org/10.1016/j.physletb.2020.135651arXiv: 1911.04955 [nucl-th]

  45. D.R. Entem, R. Machleidt, Accurate charge dependent nucleon nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68, 041001 (2003). https://doi.org/10.1103/PhysRevC.68.041001arXiv: nucl-th/0304018

    Article  ADS  Google Scholar 

  46. R. Machleidt, D.R. Entem, Chiral effective field theory and nuclear forces. Phys. Rep. 503, 1–75 (2011). https://doi.org/10.1016/j.physrep.2011.02.001arXiv: 1105.2919 [nucl-th]

  47. D.R. Entem, R. Machleidt, Y. Nosyk, High-quality two-nucleon potentials up to fifth order of the chiral expansion. Phys. Rev. C 96(2), 024004 (2017). https://doi.org/10.1103/PhysRevC.96.024004arXiv: 1703.05454 [nucl-th]

  48. E. Epelbaum, H. Krebs, U.-G. Meißner, Precision nucleon–nucleon potential at fifth order in the chiral expansion. Phys. Rev. Lett. 115(12), 122301 (2015). https://doi.org/10.1103/PhysRevLett.115.122301arXiv: 1412.4623 [nucl-th]

  49. P. Reinert, H. Krebs, E. Epelbaum, Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order. Eur. Phys. J. A 54(5), 86 (2018). https://doi.org/10.1140/epja/i2018-12516-4arXiv: 1711.08821 [nucl-th]

    Article  ADS  Google Scholar 

  50. P. Maris et al., Light nuclei with semilocal momentum-space regularized chiral interactions up to third order. Phys. Rev. C 103(5), 054001 (2021). https://doi.org/10.1103/PhysRevC.103.054001arXiv: 2012.12396 [nucl-th]

    Article  ADS  Google Scholar 

  51. V. Somá, P. Navrátil, F. Raimondi, C. Barbieri, T. Duguet, Novel chiral Hamiltonian and observables in light and medium-mass nuclei. Phys. Rev. C 101(1), 014318 (2020). https://doi.org/10.1103/PhysRevC.101.014318arXiv: 1907.09790 [nucl-th]

  52. T. Miyagi, S.R. Stroberg, P. Navrátil, K. Hebeler, J.D. Holt, Converged ab initio calculations of heavy nuclei. Phys. Rev. C 105(1), 014302 (2022). https://doi.org/10.1103/PhysRevC.105.014302arXiv: 2104.04688 [nucl-th]

  53. V. Somá, C. Barbieri, T. Duguet, P. Navrátil, Moving away from singly-magic nuclei with Gorkov Green’s function theory. Eur. Phys. J. A 57(4), 135 (2021). https://doi.org/10.1140/epja/s10050-021-00437-4arXiv: 2009.01829 [nucl-th]

    Article  ADS  Google Scholar 

  54. A. Ekström, G.R. Jansen, K.A. Wendt, G. Hagen, T. Papenbrock, B.D. Carlsson, C. Forssén, M. Hjorth-Jensen, P. Navrátil, W. Nazarewicz, Accurate nuclear radii and binding energies from a chiral interaction. Phys. Rev. C 91(5), 051301 (2015). https://doi.org/10.1103/PhysRevC.91.051301arXiv: 1502.04682 [nucl-th]

    Article  ADS  Google Scholar 

  55. L. Girlanda, A. Kievsky, M. Viviani, Subleading contributions to the three-nucleon contact interaction. Phys. Rev. C 84(1) (2011). [Erratum: Phys. Rev. C 102, 019903 (2020)], p. 014001. https://doi.org/10.1103/PhysRevC.84.014001. arXiv: 1102.4799 [nucl-th]

  56. A. Kievsky, Phenomenological spin orbit three-body force. Phys. Rev. C 60, 034001 (1999). https://doi.org/10.1103/PhysRevC.60.034001arXiv: nucl-th/9905045

  57. L. Girlanda, A. Kievsky, M. Viviani, L. Marcucci, Progress in the quest for a realistic three-nucleon force. PoS CD15 103 (2016). https://doi.org/10.22323/1.253.0103

  58. K. Kravvaris, P. Navrátil, S. Quaglioni, C. Hebborn, G. Hupin, Ab initio prediction for radiative capture of protons on \({^7}\)Be. http://arxiv.org/abs/2202.11759

  59. A. Kumar et al., Nuclear force imprints revealed on the elastic scattering of protons with \(^{10}{\rm C}\). Phys. Rev. Lett. 118(26), 262502 (2017). https://doi.org/10.1103/PhysRevLett.118.262502arXiv: 1705.05409 [nucl-ex]

  60. H. Witala, J. Golak, R. Skibinski, K. Topolnicki, Calculations of three-nucleon reactions with \({\rm N}^3{{\rm LO}}\) chiral forces: achievements and challenges. J. Phys. G 41, 094011 (2014). https://doi.org/10.1088/0954-3899/41/9/094011arXiv: 1310.0198 [nucl-th]

  61. R. Skibiński, J. Golak, K. Topolnicki, H. Witala, E. Epelbaum, H. Kamada, H. Krebs, U.-G. Meißner, A. Nogga, Modern chiral forces applied to the nucleon-deuteron radiative capture. Few Body Syst. 58(2), 28 (2017). https://doi.org/10.1007/s00601-016-1190-1

  62. V. Urbanevych, R. Skibiński, H. Witała, J. Golak, K. Topolnicki, A. Grassi, E. Epelbaum, H. Krebs, Application of a momentum-space semi-locally regularized chiral potential to selected disintegration processes. Phys. Rev. C 103(2), 024003 (2021). https://doi.org/10.1103/PhysRevC.103.024003arXiv: 2007.14836 [nucl-th]

  63. P. Navrátil, S. Quaglioni, G. Hupin, C. Romero-Redondo, A. Calci, Unified ab initio approaches to nuclear structure and reactions. Phys. Scr. 91(5), 053002 (2016). https://doi.org/10.1088/0031-8949/91/5/053002arXiv: 1601.03765 [nucl-th]

  64. N. Michel, M. Płoszajczak, Gamow shell model: the unified theory of nuclear structure and reactions, vol 983. Lecture Notes in Physics (2021). https://doi.org/10.1007/978-3-030-69356-5

  65. K.D. Launey, A. Mercenne, T. Dytrych, Nuclear dynamics and reactions in the ab initio symmetry-adapted framework. Ann. Rev. Nucl. Part. Sci. 71, 253–277 (2021). https://doi.org/10.1146/annurev-nucl-102419-033316arXiv: 2108.04894 [nucl-th]

  66. K.D. Launey, T. Dytrych, J.P. Draayer, Symmetry-guided large-scale shell-model theory. Prog. Part. Nucl. Phys. 89, 101–136 (2016). https://doi.org/10.1016/j.ppnp.2016.02.001arXiv: 1612.04298 [nucl-th]

    Article  ADS  Google Scholar 

  67. T. Dytrych, K.D. Launey, J.P. Draayer, D. Rowe, J. Wood, G. Rosensteel, C. Bahri, D. Langr, R.B. Baker, Physics of nuclei: key role of an emergent symmetry. Phys. Rev. Lett. 124(4), 042501 (2020). https://doi.org/10.1103/PhysRevLett.124.042501arXiv: 1810.05757 [nucl-th]

  68. D.J. Rowe, Microscopic theory of the nuclear collective model. Rep. Prog. Phys. 48(10), 1419–1480 (1985). https://doi.org/10.1088/0034-4885/48/10/003

  69. O. Castaños, P.O. Hess, J.P. Draayer, P. Rochford, Pseudo-symplectic model for strongly deformed heavy nuclei. Nucl. Phys. A 524, 469–478 (1991). https://doi.org/10.1016/0375-9474(91)90280-J

    Article  ADS  Google Scholar 

  70. M. Jarrio, J.L. Wood, D.J. Rowe, The SU(3) structure of rotational states in heavy deformed nuclei. Nucl. Phys. A 528, 409–435 (1991). https://doi.org/10.1016/0375-9474(91)90096-0

    Article  ADS  Google Scholar 

  71. C. Bahri, D.J. Rowe, SU(3) quasidynamical symmetry as an organizational mechanism for generating nuclear rotational motions. Nucl. Phys. A 662, 125–147 (2000). https://doi.org/10.1016/S0375-9474(99)00394-2arXiv: nucl-th/9906039

    Article  ADS  Google Scholar 

  72. K. Heyde, J.L. Wood, Shape coexistence in atomic nuclei. Rev. Mod. Phys. 83, 1467–1521 (2011). https://doi.org/10.1103/RevModPhys.83.1467

    Article  ADS  Google Scholar 

  73. K.D. Launey, T. Dytrych, G.H. Sargsyan, R.B. Baker, J.P. Draayer, Emergent symplectic symmetry in atomic nuclei: ab initio symmetry-adapted no-core shell model. Eur. Phys. J. ST 229(14–15), 2429–2441 (2020). https://doi.org/10.1140/epjst/e2020-000178-3arXiv: 2108.04900 [nucl-th]

  74. P. Ruotsalainen et al., Isospin symmetry in B(E2) values: Coulomb excitation study of \(^21{\rm Mg}\). Phys. Rev. C 99(5), 051301 (2019). https://doi.org/10.1103/PhysRevC.99.051301arXiv: 1811.00774 [nucl-ex]

  75. G. Rosensteel, D.J. Rowe, Nuclear Sp(3, R) Model. Phys. Rev. Lett. 38, 10–14 (1977). https://doi.org/10.1103/PhysRevLett.38.10

    Article  ADS  Google Scholar 

  76. A.C. Dreyfuss, K.D. Launey, T. Dytrych, J.P. Draayer, C. Bahri, Hoyle state and rotational features in Carbon-12 within a no-core shell model framework. Phys. Lett. B 727, 511–515 (2013). https://doi.org/10.1016/j.physletb.2013.10.048arXiv: 1212.2255 [nucl-th]

    Article  ADS  Google Scholar 

  77. G.K. Tobin, M.C. Ferriss, K.D. Launey, T. Dytrych, J.P. Draayer, A.C. Dreyfuss, C. Bahri, Symplectic no-core shell-model approach to intermediate-mass nuclei. Phys. Rev. C 89(3), 034312 (2014). https://doi.org/10.1103/PhysRevC.89.034312arXiv: 1311.2112 [nucl-th]

  78. D. Kekejian, J. Draayer, K. Launey, Abstract: X13.00007: Symplectic Effective Field Theory*. APS April Meeting 2021. 2021. https://meetings.aps.org/Meeting/APR21/Session/X13.7

  79. J. Henderson et al., Testing microscopically derived descriptions of nuclear collectivity: Coulomb excitation of \(^{22}{\rm Mg}\). Phys. Lett. B 782, 468–473 (2018). https://doi.org/10.1016/j.physletb.2018.05.064arXiv: 1709.03948 [nucl-ex]

    Article  ADS  Google Scholar 

  80. J. Williams et al., Structure of Mg28 and influence of the neutron pf shell. Phys. Rev. C 100(1), 014322 (2019). https://doi.org/10.1103/PhysRevC.100.014322

  81. K. Becker, K. Launey, A. Ekstrom, Searching for the origin of symplectic symmetry within the chiral effective potential. APS Division of Nuclear Physics Meeting Abstracts. Vol. 2020. APS Meeting Abstracts. SM.002 (2020)

  82. C.-J. Yang, A. Ekström, C. Forssén, G. Hagen, Power counting in chiral effective field theory and nuclear binding. Phys. Rev. C 103(5), 054304 (2021). https://doi.org/10.1103/PhysRevC.103.054304arXiv: 2011.11584 [nucl-th]

  83. A. Gade et al., Reduced occupancy of the deeply bound 0d5/2 neutron state in Ar-32. Phys. Rev. Lett. 93, 042501 (2004). https://doi.org/10.1103/PhysRevLett.93.042501

  84. A. Gade et al., Reduction of spectroscopic strength: weakly-bound and strongly-bound single-particle states studied using one-nucleon knockout reactions. Phys. Rev. C 77, 044306 (2008). https://doi.org/10.1103/PhysRevC.77.044306

  85. N. Michel, W. Nazarewicz, M. Ploszajczak, K. Bennaceur, Gamow shell model description of neutron rich nuclei. Phys. Rev. Lett. 89, 042502 (2002). https://doi.org/10.1103/PhysRevLett.89.042502arXiv: nucl-th/0201073

  86. J. Okołowicz, M. Płoszajczak, I. Rotter, Dynamics of quantum systems embedded in a con-tinuum. Phys. Rep. 374(4), 271–383 (2003), ISSN: 0370-1573. https://doi.org/10.1016/S0370-1573(02)00366-6. https://www.sciencedirect.com/science/article/pii/S0370157302003666

  87. B.S. Hu, Q. Wu, J.G. Li, Y.Z. Ma, Z.H. Sun, N. Michel, F.R. Xu, An ab-initio Gamow shell model approach with a core. Phys. Lett. B 802, 135206 (2020). https://doi.org/10.1016/j.physletb.2020.135206arXiv: 2001.02832 [nucl-th]

  88. G. Papadimitriou, J. Rotureau, N. Michel, M. Ploszajczak, B.R. Barrett, Ab-initio no-core Gamow shell model calculations with realistic interactions. Phys. Rev. C 88(4), 044318 (2013). https://doi.org/10.1103/PhysRevC.88.044318arXiv: 1301.7140 [nucl-th]

  89. G. Hagen, D.J. Dean, M. Hjorth-Jensen, T. Papenbrock, Complex coupled-cluster approach to an ab-initio description of open quantum systems. Phys. Lett. B 656, 169–173 (2007). https://doi.org/10.1016/j.physletb.2007.07.072arXiv: nucl-th/0610072

    Article  ADS  Google Scholar 

  90. S. Baroni, P. Navrátil, S. Quaglioni, Unified ab initio approach to bound and unbound states: no-core shell model with continuum and its application to \(^7{{\rm He}}\). Phys. Rev. C 87(3), 034326 (2013). https://doi.org/10.1103/PhysRevC.87.034326arXiv: 1301.3450 [nucl-th]

    Article  ADS  Google Scholar 

  91. A. Kievsky, M. Viviani, S. Rosati, Polarization observables in p–d scattering below 30-MeV. Phys. Rev. C 64, 024002 (2001). https://doi.org/10.1103/PhysRevC.64.024002arXiv: nucl-th/0103058

  92. L.E. Marcucci, A. Kievsky, L. Girlanda, S. Rosati, M. Viviani, N-d elastic scattering using the hyperspherical harmonics approach with realistic local and non-local interactions. Phys. Rev. C 80, 034003 (2009). https://doi.org/10.1103/PhysRevC.80.034003arXiv: 0905.3306 [nucl-th]

  93. L. Girlanda, A. Kievsky, M. Viviani, L.E. Marcucci, Short-range three-nucleon interaction from A=3 data and its hierarchical structure. Phys. Rev. C 99(5), 054003 (2019). https://doi.org/10.1103/PhysRevC.99.054003arXiv: 1811.09398 [nucl-th]

  94. W.H. Dickhoff, C. Barbieri, Selfconsistent Green’s function method for nuclei and nuclear matter. Prog. Part. Nucl. Phys. 52, 377–496 (2004). https://doi.org/10.1016/j.ppnp.2004.02.038arXiv: nucl-th/0402034

    Article  ADS  Google Scholar 

  95. C. Barbieri, D. Van Neck, W.H. Dickhoff, Quasiparticles in neon using the Faddeev random phase approximation. Phys. Rev. A 76, 052503 (2007). https://doi.org/10.1103/PhysRevA.76.052503arXiv: 0704.1542 [physics.chem-ph]

  96. C. Barbieri, M. Hjorth-Jensen, Quasiparticle and quasihole states of nuclei around Ni-56. Phys. Rev. C 79, 064313 (2009). https://doi.org/10.1103/PhysRevC.79.064313arXiv: 0902.3942 [nucl-th]

  97. V. Soma, C. Barbieri, T. Duguet, Ab initio self-consistent Gorkov–Green’s function calculations of semi-magic nuclei: numerical implementation at second order with a two-nucleon interaction. Phys. Rev. C 89(2)(2014). https://doi.org/10.1103/PhysRevC.89.024323arXiv: 1311.1989 [nucl-th]

  98. C. Barbieri, Computational many-body physics. http://personal.ph.surrey.ac.uk/~cb0023/bcdor/bcdor/Comp_Many-Body_Phys.html (2021)

  99. S.R. Stroberg, A. Calci, H. Hergert, J.D. Holt, S.K. Bogner, R. Roth, A. Schwenk, A nucleus-dependent valence-space approach to nuclear structure. Phys. Rev. Lett. 118(3), 032502 (2017). https://doi.org/10.1103/PhysRevLett.118.032502arXiv: 1607.03229 [nucl-th]

  100. S.R. Stroberg, imsrg. https://github.com/ragnarstroberg/imsrg (2021)

  101. B.A. Brown, W.D.M. Rae, The shell-model code NuShellX@MSU. Nucl. Data Sheets 120, 115–118 (2014). https://doi.org/10.1016/j.nds.2014.07.022

    Article  ADS  Google Scholar 

  102. W. D. M. Rae, NuShellX. http://www.garsington.eclipse.co.uk/ (2021)

  103. N. Shimizu, T. Mizusaki, Y. Utsuno, Y. Tsunoda, Thick-restart block Lanczos method for large-scale shell-model calculations. Comput. Phys. Commun. 244, 372–384 (2019). https://doi.org/10.1016/j.cpc.2019.06.011arXiv: 1902.02064 [nucl-th]

    Article  ADS  Google Scholar 

  104. N. Shimizu, ”KSHELL” code for nuclear shell-model calculations. https://sites.google.com/a/cns.s.u-tokyo.ac.jp/kshell/home (2021)

  105. C.W. Johnson, W.E. Ormand, K.S. McElvain, H. Shan, “BIGSTICK: A flexible configuration-interaction shell-model code.” (2018). arXiv: 1801.08432 [physics.comp-ph]

  106. C. Johnson, BigstickPublick. https://github.com/cwjsdsu/BigstickPublick (2021)

  107. E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, The shell model as unified view of nuclear structure. Rev. Mod. Phys. 77, 427–488 (2005). https://doi.org/10.1103/RevModPhys.77.427arXiv: nucl-th/0402046

    Article  ADS  Google Scholar 

  108. E. Caurier, Antoine shell model code. http://www.iphc.cnrs.fr/nutheo/code_antoine/menu.html (2021)

  109. USQCD: US Lattice Quantum Chromodynamics. https://www.usqcd.org/ (2021)

  110. PsiCode. https://psicode.org/ (2021)

  111. J.A. Melendez, C. Drischler, R.J. Furnstahl, A.J. Garcia, Xilin Zhang, Model reduction methods for nuclear emulators. arxiv: 2203.05528

  112. R.J. Furnstahl, D.R. Phillips, S. Wesolowski, A recipe for EFT uncertainty quantification in nuclear physics. J. Phys. G 42(3), 034028 (2015). https://doi.org/10.1088/0954-3899/42/3/034028arXiv: 1407.0657 [nucl-th]

    Article  ADS  Google Scholar 

  113. X. Zhang, K.M. Nollett, D.R. Phillips, Halo effective field theory constrains the solar \({}^7\text{ Be } +p \,^8\text{ B }+ \gamma \) rate. Phys. Lett. B 751, 535–540 (2015). https://doi.org/10.1016/j.physletb.2015.11.005arXiv: 1507.07239 [nucl-th]

    Article  ADS  Google Scholar 

  114. G.B. King, A.E. Lovell, L. Neufcourt, F.M. Nunes, Direct comparison between Bayesian and frequentist uncertainty quantification for nuclear reactions. Phys. Rev. Lett. 122(23), 232502 (2019). https://doi.org/10.1103/PhysRevLett.122.232502arXiv: 1905.05072 [nucl-th]

    Article  ADS  Google Scholar 

  115. E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773–1825 (2009). https://doi.org/10.1103/RevModPhys.81.1773arXiv: 0811.1338 [nucl-th]

    Article  ADS  Google Scholar 

  116. E. Epelbaum, H. Krebs, P. Reinert, High-precision nuclear forces from chiral EFT: state-of-the-art, challenges and outlook. Front. Phys. 8, 98 (2020). https://doi.org/10.3389/fphy.2020.00098arXiv: 1911.11875 [nucl-th]

    Article  Google Scholar 

  117. S. Wesolowski, R.J. Furnstahl, J.A. Melendez, D.R. Phillips, Exploring Bayesian parameter estimation for chiral effective field theory using nucleon–nucleon phase shifts. J. Phys. G 46(4), 045102 (2019). https://doi.org/10.1088/1361-6471/aaf5fcarXiv: 1808.08211 [nucl-th]

  118. D.R. Phillips et al., Get on the BAND Wagon: a Bayesian framework for quantifying model uncertainties in nuclear dynamics. J. Phys. G 48(7), 072001 (2021). https://doi.org/10.1088/1361-6471/abf1dfarXiv: 2012.07704 [nucl-th]

  119. P.G. Breen, C.N. Foley, T. Boekholt, S.P. Zwart, Newton versus the machine: solving the chaotic three-body problem using deep neural networks. Monthly Notices of the Royal Astronomical Society 494.2 (2020), pp. 2465–2470. ISSN: 0035-8711. https://doi.org/10.1093/mnras/staa713. eprint: https://academic.oup.com/mnras/article-pdf/494/2/2465/ 33113691/staa713.pdf

  120. M. Bogojeski, L. Vogt-Maranto, M.E. Tuckerman, K.-R. Müller, K. Burke, Quantum chemical accuracy from density functional approximations via machine learning. Nat. Commun. 11(1), 5223 (2020). https://doi.org/10.1038/s41467-020-19093-1

  121. C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning (University Press Group Limited, Adaptive computation and machine learning series, 2006). ISBN 9780262182539

  122. P. Demol, T. Duguet, A. Ekström, M. Frosini, K. Hebeler, S. König, D. Lee, A. Schwenk, S. Somá, A. Tichai, Improved many-body expansions from eigenvector continuation. Phys. Rev. C 101(4), 041302 (2020). https://doi.org/10.1103/PhysRevC.101.041302arXiv: 1911.12578 [nucl-th]

  123. D. Bai, Z. Ren, Generalizing the calculable R-matrix theory and eigenvector continuation to the incoming wave boundary condition. Phys. Rev. C 103(1), 014612 (2021). https://doi.org/10.1103/PhysRevC.103.014612arXiv: 2101.06336 [nucl-th]

  124. S. Yoshida, N. Shimizu, A new workflow of shell-model calculations with the emulator and preprocessing using eigenvector continuation, and shell-model code ShellModel.jl (2021). arXiv: 2105.08256 [nucl-th]

  125. S. Wesolowski, Fast and rigorous constraints on chiral three-nucleon forces from few-body observables. https://buqeye.github.io/assets/talks/Wesolowski_INT21.pdf

  126. C. Drischler, Eigenvector continuation for scattering with local chiral nucleon–nucleon and optical potentials. https://buqeye.github.io/assets/talks/Drischler_INT21.pdf

  127. X. Zhang, Efficient emulators for three-body scattering using eigenvector continuation. https://buqeye.github.io/assets/talks/Zhang_INT21.pdf

  128. S.B.S. Miller, A. Ekström, C.. Forssén, Wave-packet continuum discretisation for nucleon-nucleon scattering predictions. J. Phys. G 49(2), 024001 (2022). https://doi.org/10.1088/1361-6471/ac3cfd

  129. C. Schwartz, Electron scattering from hydrogen. Phys. Rev. 124, 1468–1471 (1961). https://doi.org/10.1103/PhysRev.124.1468

  130. R.J. Furnstahl, H.-W. Hammer, A. Schwenk, Nuclear structure at the crossroads. Few Body Syst. 62(3), 72 (2021). https://doi.org/10.1007/s00601-021-01658-5arXiv: 2107.00413 [nucl-th]

  131. C. Drischler, M. Quinonez, P.G. Giuliani, A.E. Lovell, F.M. Nunes, Toward emulating nuclear reactions using eigenvector continuation. Phys. Lett. B 823, 136777 (2021). https://doi.org/10.1016/j.physletb.2021.136777arXiv: 2108.08269 [nucl-th]

  132. A. Kievsky, The Complex Kohn variational method applied to N–d scattering. Nucl. Phys. A 624, 125–139 (1997). https://doi.org/10.1016/S0375-9474(97)81832-5arXiv: nucl-th/9706061

  133. R. Nesbet, Variational methods in electron-atom scattering theory, Physics of atoms and molecules (Plenum Press, 1980). (ISBN: 9780306404139)

  134. R.R. Lucchese, Anomalous singularities in the complex Kohn variational principle of quantum scattering theory. Phys. Rev. A 40, 6879–6885 (1989). https://doi.org/10.1103/PhysRevA.40.6879

    Article  ADS  Google Scholar 

  135. J.Z.H. Zhang, S. Chu, W.H. Miller, Quantum scattering via the S-matrix version of the Kohn variational principle. J. Chem. Phys. 88(10), 6233–6239 (1988). https://doi.org/10.1063/1.454462

  136. X. Zhang, R.J. Furnstahl, Fast emulation of quantum three-body scattering (2021). arXiv: 2110.04269 [nucl-th]

  137. W. Kohn, Variational methods in nuclear collision problems. Phys. Rev. 74, 1763–1772 (1948). https://doi.org/10.1103/PhysRev.74.1763

  138. R.G. Newton, Scattering Theory of Waves and Particles (Dover, Downers Grove, 2002)

    MATH  Google Scholar 

  139. M. Lieber, L. Rosenberg, L. Spruch, Variational principles for three-body breakup scattering. Phys. Rev. D 5, 1347–1356 (1972). https://doi.org/10.1103/PhysRevD.5.1347

    Article  ADS  Google Scholar 

  140. M. Viviani, A. Kievsky, S. Rosati, The Kohn variational principle for elastic proton deuteron scattering above deuteron breakup threshold. Few Body Syst. 30, 39–63 (2001). https://doi.org/10.1007/s006010170017arXiv: nucl-th/0102048

    Article  ADS  Google Scholar 

  141. L. Hlophe, J. Lei, C. Elster, A. Nogga, F.M. Nunes, D. Jurčiukonis, A. Deltuva, Deuterona-\(\alpha \) scattering: separable versus nonseparable Faddeev approach. Phys. Rev. C 100(3), 034609 (2019). https://doi.org/10.1103/PhysRevC.100.034609arXiv: 1907.01587 [nucl-th]

  142. M. Luscher, Two particle states on a torus and their relation to the scattering matrix. Nucl. Phys. B 354, 531–578 (1991). https://doi.org/10.1016/0550-3213(91)90366-6

    Article  ADS  MathSciNet  Google Scholar 

  143. A.W. Jackura, S.M. Dawid, C. Fernàndez-Ramírez, V. Mathieu, M. Mikhasenko, A. Pilloni, S.R. Sharpe, A.P. Szczepaniak, Equivalence of three-particle scattering formalisms. Phys. Rev. D 100(3), 034508 (2019). https://doi.org/10.1103/PhysRevD.100.034508arXiv: 1905.12007 [hep-ph]

  144. M. Eliyahu, B. Bazak, N. Barnea, Extrapolating lattice QCD results using effective field theory. Phys. Rev. C 102(4), 044003 (2020). https://doi.org/10.1103/PhysRevC.102.044003arXiv: 1912.07017 [nucl-th]

  145. X. Zhang, Extracting free-space observables from trapped interacting clusters. Phys. Rev. C 101(5), 051602 (2020). https://doi.org/10.1103/PhysRevC.101.051602arXiv: 1905.05275 [nucl-th]

  146. X. Zhang, S.R. Stroberg, P. Navrátil, C. Gwak, J.A. Melendez, R.J. Furnstahl, J.D. Holt, Ab initio calculations of low-energy nuclear scattering using confining potential traps. Phys. Rev. Lett. 125(11), 112503 (2020). https://doi.org/10.1103/PhysRevLett.125.112503arXiv: 2004.13575 [nucl-th]

  147. Y.-H. Song, R. Lazauskas, U. van Kolck, Triton binding energy and neutron-deuteron scattering up to next-to-leading order in chiral effective field theory. Phys. Rev. C 96.2 (2017). [Erratum: Phys. Rev. C 100, 019901 (2019)], p. 024002. https://doi.org/10.1103/PhysRevC.96.024002. arXiv: 1612.09090 [nucl-th]

  148. R. Peng, S. Lyu, S. König, B. Long, Constructing chiral effective field theory around unnatural leading-order interactions (2021). arXiv: 2112.00947 [nucl-th]

  149. S. König, Few-body perspectives for partly perturbative pions. https://sites.google.com/uw.edu/int/programs/21-1b

  150. S. König, Energies and radii of light nuclei around unitarity. Eur. Phys. J. A 56(4), 113 (2020). https://doi.org/10.1140/epja/s10050-020-00098-9arXiv: 1910.12627 [nucl-th]

    Article  ADS  Google Scholar 

  151. L. Platter, H.-W. Hammer, Universality in the triton charge form-factor. Nucl. Phys. A 766, 132–141 (2006). https://doi.org/10.1016/j.nuclphysa.2005.11.023arXiv: nucl-th/0509045

    Article  ADS  Google Scholar 

  152. B. Bazak, J. Kirscher, S. König, M. Pavón Valderrama, N. Barnea, U. van Kolck, Four-body scale in universal few-boson systems. Phys. Rev. Lett. 122, 143001 (2019). https://doi.org/10.1103/PhysRevLett.122.143001

  153. A. Deltuva, Properties of universal bosonic tetramers. Few-Body Syst. 54, 569 (2013). https://doi.org/10.1007/s00601-012-0313-6arXiv: 1202.0167 [physics.atom-ph]

  154. E.R. Anderson, S.K. Bogner, R.J. Furnstahl, R.J. Perry, Operator evolution via the similarity renormalization group I: the deuteron. Phys. Rev. C 82, 054001 (2010). https://doi.org/10.1103/PhysRevC.82.054001arXiv: 1008.1569 [nucl-th]

  155. S.N. More, S.K. Bogner, R.J. Furnstahl, Scale dependence of deuteron electrodisintegration. Phys. Rev. C 96(5), 054004 (2017). https://doi.org/10.1103/PhysRevC.96.054004arXiv: 1708.03315 [nucl-th]

  156. D. Odell, A. Deltuva, L. Platter, van der Waals interaction as the starting point for an effective field theory. Phys. Rev. A 104(2), 023306 (2021). https://doi.org/10.1103/PhysRevA.104.023306arXiv: 2105.03442 [cond-mat.quant-gas]

  157. M. Pavón Valderrama, D.R. Phillips, Power counting of contact-range currents in effective field theory. Phys. Rev. Lett. 114(8), 082502 (2015). https://doi.org/10.1103/PhysRevLett.114.082502arXiv: 1407.0437 [nucl-th]

  158. D.B. Kaplan, M.J. Savage, M.B. Wise, A New expansion for nucleon–nucleon interactions. Phys. Lett. B 424, 390–396 (1998). https://doi.org/10.1016/S0370-2693(98)00210-XarXiv: nucl-th/9801034

  159. U. van Kolck, Effective field theory of short range forces. Nucl. Phys. A 645, 273–302 (1999). https://doi.org/10.1016/S0375-9474(98)00612-5arXiv: nucl-th/9808007

    Article  ADS  Google Scholar 

  160. M.C. Birse, J.A. McGovern, K.G. Richardson, A renormalization group treatment of two-body scattering. Phys. Lett. B 464, 169–176 (1999). https://doi.org/10.1016/S0370-2693(99)00991-0arXiv: hep-ph/9807302

  161. S. Weinberg, Effective chiral Lagrangians for nucleon -pion interactions and nuclear forces. Nucl. Phys. B 363, 3–18 (1991). https://doi.org/10.1016/0550-3213(91)90231-L

    Article  ADS  Google Scholar 

  162. C. Drischler, K. Hebeler, A. Schwenk, Chiral interactions up to next-to-next-to-next-to-leading order and nuclear saturation. Phys. Rev. Lett. 122(4), 042501 (2019). https://doi.org/10.1103/PhysRevLett.122.042501arXiv: 1710.08220 [nucl-th]

  163. J.L. Friar, Dimensional power counting in nuclei. Few Body Syst. 22, 161 (1997). https://doi.org/10.1007/s006010050059arXiv: nucl-th/9607020

    Article  ADS  Google Scholar 

  164. U. van Kolck, The problem of renormalization of chiral nuclear forces. Front. Phys. 8, 79 (2020). https://doi.org/10.3389/fphy.2020.00079arXiv: 2003.06721 [nucl-th]

  165. M. Lutz, Effective chiral theory of nucleon–nucleon scattering. Nucl. Phys. A 677, 241–312 (2000). https://doi.org/10.1016/S0375-9474(00)00206-2arXiv: nucl-th/9906028

  166. S.R. Beane, P.F. Bedaque, M.J. Savage, U. van Kolck, Towards a perturbative theory of nuclear forces. Nucl. Phys. A 700, 377–402 (2002). https://doi.org/10.1016/S0375-9474(01)01324-0arXiv: nucl-th/0104030

    Article  ADS  MATH  Google Scholar 

  167. B. Long, C.J. Yang, Short-range nuclear forces in singlet channels. Phys. Rev. C 86, 024001 (2012). https://doi.org/10.1103/PhysRevC.86.024001arXiv: 1202.4053 [nucl-th]

  168. M. Sánchez Sánchez, C.-J. Yang, B. Long, U. van Kolck, Two-nucleon \({}^1S_0\) amplitude zero in chiral effective field theory. Phys. Rev. C 97(2), 024001 (2018). https://doi.org/10.1103/PhysRevC.97.024001arXiv: 1704.08524 [nucl-th]

  169. M. Sanchez Sanchez, N.A. Smirnova, A.M. Shirokov, P. Maris, J.P. Vary, Improved description of light nuclei through chiral effective field theory at leading order. Phys. Rev. C 102(2), 024324 (2020). https://doi.org/10.1103/PhysRevC.102.024324arXiv: 2002.12258 [nucl-th]

  170. C. Ordonez, L. Ray, U. van Kolck, The two nucleon potential from chiral Lagrangians. Phys. Rev. C 53, 2086–2105 (1996). https://doi.org/10.1103/PhysRevC.53.2086arXiv: hep-ph/9511380

  171. N. Kaiser, S. Gerstendorfer, W. Weise, Peripheral NN scattering: role of delta excitation, correlated two pion and vector meson exchange. Nucl. Phys. A 637, 395–420 (1998). https://doi.org/10.1016/S0375-9474(98)00234-6arXiv: nucl-th/9802071

  172. M. Piarulli, L. Girlanda, R. Schiavilla, A. Kievsky, A. Lovato, L.E. Marcucci, S.C. Pieper, M. Viviani, R.B. Wiringa, Local chiral potentials with \(\Delta \)-intermediate states and the structure of light nuclei. Phys. Rev. C 94(5), 054007 (2016). https://doi.org/10.1103/PhysRevC.94.054007arXiv: 1606.06335 [nucl-th]

  173. W.G. Jiang, A. Ekström, C. Forssén, G. Hagen, G.R. Jansen, T. Papenbrock, Accurate bulk properties of nuclei from \(A=2\) to \(\infty \) from potentials with \(\Delta \) isobars. Phys. Rev. C 102(5), 054301 (2020). https://doi.org/10.1103/PhysRevC.102.054301arXiv: 2006.16774 [nucl-th]

  174. I. Stetcu, B.R. Barrett, U. van Kolck, No-core shell model in an effective-field-theory frame-work. Phys. Lett. B 653, 358–362 (2007). https://doi.org/10.1016/j.physletb.2007.07.065arXiv: nucl-th/0609023

  175. A. Bansal, S. Binder, A. Ekström, G. Hagen, G.R. Jansen, T. Papenbrock, Pion-less effective field theory for atomic nuclei and lattice nuclei. Phys. Rev. C 98(5), 054301 (2018). https://doi.org/10.1103/PhysRevC.98.054301arXiv: 1712.10246 [nucl-th]

  176. W.G. Dawkins, J. Carlson, U. van Kolck, A. Gezerlis, Clustering of four-component unitary fermions. Phys. Rev. Lett. 124(14), 143402 (2020). https://doi.org/10.1103/PhysRevLett.124.143402arXiv: 1908.04288 [cond-mat.quant-gas]

  177. D.R. Phillips, T.D. Cohen, How short is too short? Constraining contact interactions in nucleon–nucleon scattering. Phys. Lett. B 390, 7–12 (1997). https://doi.org/10.1016/S0370-2693(96)01411-6arXiv: nucl-th/9607048

  178. C.-J. Yang, A. Ekström, C. Forssén, G. Hagen, G. Rupak, U. van Kolck, The importance of few-nucleon forces in chiral effective field theory (2021). arXiv: 2109.13303 [nucl-th]

  179. F. Sammarruca, L. E. Marcucci, L. Coraggio, J. W. Holt, N. Itaco, R. Machleidt, Nuclear and neutron matter equations of state from high-quality potentials up to fifth order of the chiral expansion (2018). arXiv: 1807.06640 [nucl-th]

  180. R. Machleidt, P. Liu, D.R. Entem, E. Ruiz Arriola, Renormalization of the leading-order chiral nucleon-nucleon interaction and bulk properties of nuclear matter. Phys. Rev. C 81, 024001 (2010). https://doi.org/10.1103/PhysRevC.81.024001arXiv: 0910.3942 [nucl-th]

  181. C. Drischler, J.A. Melendez, R.J. Furnstahl, D.R. Phillips, Quantifying uncertainties and correlations in the nuclear-matter equation of state. Phys. Rev. C 102(5), 054315 (2020). https://doi.org/10.1103/PhysRevC.102.054315arXiv: 2004.07805 [nucl-th]

  182. A. Kievsky, M. Viviani, D. Logoteta, I. Bombaci, L. Girlanda, Correlations imposed by the unitary limit between few-nucleon systems, nuclear matter and neutron stars. Phys. Rev. Lett. 121(7), 072701 (2018). https://doi.org/10.1103/PhysRevLett.121.072701arXiv: 1806.02636 [nucl-th]

  183. E. Epelbaum, J. Gegelia, Weinberg’s approach to nucleon-nucleon scattering revisited. Phys. Lett. B 716, 338–344 (2012). https://doi.org/10.1016/j.physletb.2012.08.025arXiv: 1207.2420 [nucl-th]

    Article  ADS  Google Scholar 

  184. J. Behrendt, E. Epelbaum, J. Gegelia, U.-G. Meißner, A. Nogga, Two-nucleon scattering in a modified Weinberg approach with a symmetry-preserving regularization. Eur. Phys. J. A 52(9), 296 (2016). https://doi.org/10.1140/epja/i2016-16296-5arXiv: 1606.01489 [nucl-th]

    Article  ADS  Google Scholar 

  185. X.-L. Ren, K.-W. Li, L.-S. Geng, B.-W. Long, P. Ring, J. Meng, Leading order relativistic chiral nucleon-nucleon interaction. Chin. Phys. C 42(1), 014103 (2018). https://doi.org/10.1088/1674-1137/42/1/014103arXiv: 1611.08475 [nucl-th]

  186. K.-W. Li, X.-L. Ren, L.-S. Geng, B.-W. Long, Leading order relativistic hyperon–nucleon interactions in chiral effective field theory. Chin. Phys. C 42(1), 014105 (2018). https://doi.org/10.1088/1674-1137/42/1/014105arXiv: 1612.08482 [nucl-th]

  187. V. Baru, E. Epelbaum, J. Gegelia, X.-L. Ren, Towards baryon–baryon scattering in manifestly Lorentz-invariant formulation of SU(3) baryon chiral perturbation theory. Phys. Lett. B 798, 134987 (2019). https://doi.org/10.1016/j.physletb.2019.134987arXiv: 1905.02116 [nucl-th]

  188. X.-L. Ren, E. Epelbaum, J. Gegelia. http://arxiv.org/abs/2202.04018 [nucl-th]

  189. A. Taylor, E. Wood, L. Bird, Proton–proton scattering at 98 and 142 MeV. Nucl. Phys. 16(2), 320–330 (1960). https://doi.org/10.1016/S00295582(60)81041-3

  190. K. Sekiguchi et al., Complete set of precise deuteron analyzing powers at intermediate energies: comparison with modern nuclear force predictions. Phys. Rev. C 65, 034003 (2002). https://doi.org/10.1103/PhysRevC.65.034003

  191. V.G.J. Stoks, R.A.M. Klomp, M.C.M. Rentmeester, J.J. de Swart, Partial wave analaysis of all nucleon–nucleon scattering data below 350-MeV. Phys. Rev. C 48, 792–815 (1993). https://doi.org/10.1103/PhysRevC.48.792

  192. S. Weinberg, Nuclear forces from chiral Lagrangians. Phys. Lett. B 251, 288–292 (1990). https://doi.org/10.1016/0370-2693(90)90938-3

    Article  ADS  Google Scholar 

  193. C. Ordonez, L. Ray, U. van Kolck, Nucleon–nucleon potential from an effective chiral Lagrangian. Phys. Rev. Lett. 72, 1982–1985 (1994). https://doi.org/10.1103/PhysRevLett.72.1982

  194. P. Reinert, H. Krebs, E. Epelbaum, Precision determination of pion-nucleon coupling constants using effective field theory. Phys. Rev. Lett. 126(9), 092501 (2021). https://doi.org/10.1103/PhysRevLett.126.092501arXiv: 2006.15360 [nucl-th]

  195. V. Bernard, E. Epelbaum, H. Krebs, U.-G. Meißner, Subleading contributions to the chiral three-nucleon force. I. Long-range Terms Phys. Rev. C 77, 064004 (2008). https://doi.org/10.1103/PhysRevC.77.064004arXiv: 0712.1967 [nucl-th]

  196. V. Bernard, E. Epelbaum, H. Krebs, U.-G. Meißner, Subleading contributions to the chiral three-nucleon force II: short-range terms and relativistic corrections. Phys. Rev. C 84, 054001 (2011). https://doi.org/10.1103/PhysRevC.84.054001arXiv: 1108.3816 [nucl-th]

  197. H. Krebs, A. Gasparyan, E. Epelbaum, Chiral three-nucleon force at N\(^4\)LO I: longest-range contributions. Phys. Rev. C 85, 054006 (2012). https://doi.org/10.1103/PhysRevC.85.054006arXiv: 1203.0067 [nucl-th]

  198. H. Krebs, A. Gasparyan, E. Epelbaum, Chiral three-nucleon force at \(N^4LO\) II: intermediate-range contributions. Phys. Rev. C 87(5), 054007 (2013). https://doi.org/10.1103/PhysRevC.87.054007arXiv: 1302.2872 [nucl-th]

  199. A.A. Slavnov, Invariant regularization of nonlinear chiral theories. Nucl. Phys. B 31, 301–315 (1971). https://doi.org/10.1016/0550-3213(71)90234-3

    Article  ADS  Google Scholar 

  200. W. Gloeckle, H. Witala, D. Huber, H. Kamada, J. Golak, The Three nucleon continuum: achievements, challenges and applications. Phys. Rep. 274, 107–285 (1996). https://doi.org/10.1016/0370-1573(95)00085-2

  201. N. Kalantar-Nayestanaki, E. Epelbaum, J.G. Messchendorp, A. Nogga, Signatures of three-nucleon interactions in few-nucleon systems. Rep. Prog. Phys. 75, 016301 (2012). https://doi.org/10.1088/0034-4885/75/1/016301arXiv: 1108.1227 [nucl-th]

  202. H. Krebs, Nuclear currents in chiral effective field theory. Eur. Phys. J. A 56(9), 234 (2020). https://doi.org/10.1140/epja/s10050-020-00230-9arXiv: 2008.00974 [nucl-th]

  203. S. Kolling, E. Epelbaum, H. Krebs, U.-G. Meißner, Two-pion exchange electromagnetic current in chiral effective field theory using the method of unitary transformation. Phys. Rev. C 80, 045502 (2009). https://doi.org/10.1103/PhysRevC.80.045502arXiv: 0907.3437 [nucl-th]

  204. S. Kolling, E. Epelbaum, H. Krebs, U.-G. Meißner, Two-nucleon electromagnetic current in chiral effective field theory: one-pion exchange and short-range contributions. Phys. Rev. C 84, 054008 (2011). https://doi.org/10.1103/PhysRevC.84.054008arXiv: 1107.0602 [nucl-th]

  205. H. Krebs, E. Epelbaum, U.-G. Meißner, Nuclear axial current operators to fourth order in chiral effective field theory. Ann. Phys. 378, 317–395 (2017). https://doi.org/10.1016/j.aop.2017.01.021arXiv: 1610.03569 [nucl-th]

  206. H. Krebs, E. Epelbaum, U.-G. Meißner, Nuclear electromagnetic currents to fourth order in chiral effective field theory. Few Body Syst. 60(2), 31 (2019). https://doi.org/10.1007/s00601019-1500-5arXiv: 1902.06839 [nucl-th]

  207. H. Krebs, E. Epelbaum, U.-G. Meißner, Subleading contributions to the nuclear scalar isoscalar current. Eur. Phys. J. A 56(9), 240 (2020). https://doi.org/10.1140/epja/s10050-02000249-yarXiv: 2005.07433 [nucl-th]

    Article  ADS  Google Scholar 

  208. S. Pastore, R. Schiavilla, J.L. Goity, Electromagnetic two-body currents of one-and two-pion range. Phys. Rev. C 78, 064002 (2008). https://doi.org/10.1103/PhysRevC.78.064002arXiv: 0810.1941 [nucl-th]

  209. S. Pastore, L. Girlanda, R. Schiavilla, M. Viviani, R.B. Wiringa, Electromagnetic currents and magnetic moments in (chi)EFT. Phys. Rev. C 80, 034004 (2009). https://doi.org/10.1103/PhysRevC.80.034004arXiv: 0906.1800 [nucl-th]

  210. S. Pastore, L. Girlanda, R. Schiavilla, M. Viviani, The two-nucleon electromagnetic charge operator in chiral effective field theory (\(\chi \)EFT) up to one loop. Phys. Rev. C 84, 024001 (2011). https://doi.org/10.1103/PhysRevC.84.024001arXiv: 1106.4539 [nucl-th]

  211. A. Baroni, L. Girlanda, S. Pastore, R. Schiavilla, M. Viviani, Nuclear axial currents in chiral effective field theory. Phys. Rev. C 93(1) (2016). [Erratum: Phys. Rev. C 93, 049902 (2016), Erratum: Phys. Rev. C 95, 059901 (2017)], p. 015501. https://doi.org/10.1103/PhysRevC.93.049902. arXiv: 1509.07039 [nucl-th]

  212. A. Baroni, L. Girlanda, A. Kievsky, L.E. Marcucci, R. Schiavilla, M. Viviani, Tritium \({\beta }\)-decay in chiral effective field theory. Phys. Rev. C 94(2) (2016). [Erratum: Phys. Rev. C 95, 059902 (2017)], p. 024003. https://doi.org/10.1103/PhysRevC.94.024003. arXiv: 1605.01620 [nucl-th]

  213. H. Krebs, E. Epelbaum, U.-G. Meißner, Box diagram contribution to the axial two-nucleon current. Phys. Rev. C 101(5), 055502 (2020). https://doi.org/10.1103/PhysRevC.101.055502arXiv: 2001.03904 [nucl-th]

  214. A.A. Filin, V. Baru, E. Epelbaum, H. Krebs, D. Möller, P. Reinert, Extraction of the neutron charge radius from a precision calculation of the deuteron structure radius. Phys. Rev. Lett. 124(8), 082501 (2020). https://doi.org/10.1103/PhysRevLett.124.082501arXiv: 1911.04877 [nucl-th]

  215. A.A. Filin, D. Möller, V. Baru, E. Epelbaum, H. Krebs, P. Reinert, High-accuracy calculation of the deuteron charge and quadrupole form factors in chiral effective field theory. Phys. Rev. C 103(2), 024313 (2021). https://doi.org/10.1103/PhysRevC.103.024313arXiv: 2009.08911 [nucl-th]

  216. D. Siemens, V. Bernard, E. Epelbaum, A. Gasparyan, H. Krebs, U.-G. Meißner, Elastic pion-nucleon scattering in chiral perturbation theory: a fresh look. Phys. Rev. C 94(1), 014620 (2016). https://doi.org/10.1103/PhysRevC.94.014620arXiv: 1602.02640 [nucl-th]

  217. D.-L. Yao, D. Siemens, V. Bernard, E. Epelbaum, A.M. Gasparyan, J. Gegelia, H. Krebs, U.-G. Meißner, Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances. JHEP 05, 038 (2016). https://doi.org/10.1007/JHEP05(2016)038arXiv: 1603.03638 [hep-ph]

    Article  ADS  Google Scholar 

  218. D. Siemens, J. Ruiz de Elvira, E. Epelbaum, M. Hoferichter, H. Krebs, B. Kubis, U.-G. Meißner, Reconciling threshold and subthreshold expansions for pion-nucleon scattering. Phys. Lett. B 770, 27–34 (2017). https://doi.org/10.1016/j.physletb.2017.04.039arXiv: 1610.08978 [nucl-th]

    Article  ADS  Google Scholar 

  219. E. Epelbaum, H. Krebs, U.-G. Meißner, Improved chiral nucleon–nucleon potential up to next-to-next-to-next-to-leading order. Eur. Phys. J. A 51(5), 53 (2015). https://doi.org/10.1140/epja/i2015-15053-8arXiv: 1412.0142 [nucl-th]

  220. R.J. Furnstahl, N. Klco, D.R. Phillips, S. Wesolowski, Quantifying truncation errors in effective field theory. Phys. Rev. C 92(2), 024005 (2015). https://doi.org/10.1103/PhysRevC.92.024005arXiv: 1506.01343 [nucl-th]

  221. E. Epelbaum, High-precision nuclear forces: where do we stand? PoS CD2018 (2019), p. 006. https://doi.org/10.22323/1.317.0006

  222. H. Krebs, E. Epelbaum, U.-G. Meißner, Nuclear forces with delta-excitations up to next-to-next-to-leading order. I. Peripheral nucleon–nucleon waves. Eur. Phys. J. A 32, 127–137 (2007). https://doi.org/10.1140/epja/i2007-10372-yarXiv: nucl-th/0703087

  223. A. Ekström, G. Hagen, T.D. Morris, T. Papenbrock, P.D. Schwartz, \(\Delta \) isobars and nuclear saturation. Phys. Rev. C 97(2), 024332 (2018). https://doi.org/10.1103/PhysRevC.97.024332arXiv: 1707.09028 [nucl-th]

  224. M. Piarulli, L. Girlanda, R. Schiavilla, R. Navarro Pérez, J.E. Amaro, E. Ruiz Arriola, Minimally nonlocal nucleon–nucleon potentials with chiral two-pion exchange including \(\Delta \) resonances. Phys. Rev. C 91(2), 024003 (2015). https://doi.org/10.1103/PhysRevC.91.024003arXiv: 1412.6446 [nucl-th]

  225. H. Krebs, A.M. Gasparyan, E. Epelbaum, Three-nucleon force in chiral EFT with explicit \(\Delta \)(1232) degrees of freedom: longest-range contributions at fourth order. Phys. Rev. C 98(1), 014003 (2018). https://doi.org/10.1103/PhysRevC.98.014003arXiv: 1803.09613 [nucl-th]

  226. T. Becher, H. Leutwyler, Baryon chiral perturbation theory in manifestly Lorentz invariant form. Eur. Phys. J. C 9, 643–671 (1999). https://doi.org/10.1007/PL00021673arXiv: hep-ph/9901384

    Article  ADS  Google Scholar 

  227. E. Epelbaum, J. Gegelia, H.P. Huesmann, U.-G. Meißner, X.-L. Ren, Effective field theory for shallow P-wave states. Few Body Syst. 62(3), 51 (2021). https://doi.org/10.1007/s00601-02101628-xarXiv: 2104.01823 [nucl-th]

  228. M.J. Savage, Including pions. Caltech/INT Mini Workshop on Nuclear Physics with Effective Field Theories, pp. 247–267 (1998). arXiv: nucl-th/9804034

  229. E. Epelbaum, A.M. Gasparyan, J. Gegelia, U.-G. Meißner, How (not) to renormalize integral equations with singular potentials in effective field theory. Eur. Phys. J. A 54(11), 186 (2018). https://doi.org/10.1140/epja/i2018-12632-1arXiv: 1810.02646 [nucl-th]

    Article  ADS  Google Scholar 

  230. G.P. Lepage, How to renormalize the Schrodinger equation, in 8th Jorge Andre Swieca Summer School on Nuclear Physics, pp. 135–180 (1997). arXiv: nucl-th/9706029

  231. J. Gegelia, About the equivalence of cutoff and conventionally renormalized effective field theories. J. Phys. G 25, 1681–1693 (1999). https://doi.org/10.1088/0954-3899/25/8/310arXiv: nucl-th/9805008

    Article  ADS  Google Scholar 

  232. C.-J. Yang, Do we know how to count powers in pionless and pionful effective field theory? Eur. Phys. J. A 56(3), 96 (2020). https://doi.org/10.1140/epja/s10050-020-00104-0arXiv: 1905.12510 [nucl-th]

    Article  ADS  Google Scholar 

  233. J. de Vries, A. Gnech, S. Shain, Renormalization of CP -violating nuclear forces. Phys. Rev. C 103(1), L012501 (2021). https://doi.org/10.1103/PhysRevC.103.L012501arXiv: 2007.04927 [hep-ph]

    Article  ADS  Google Scholar 

  234. E. Epelbaum, J. Gegelia, Regularization, renormalization and “peratization’’ in effective field theory for two nucleons. Eur. Phys. J. A 41, 341–354 (2009). https://doi.org/10.1140/epja/i200910833-3arXiv: 0906.3822 [nucl-th]

    Article  ADS  Google Scholar 

  235. J.A. Melendez, R.J. Furnstahl, D.R. Phillips, M.T. Pratola, S. Wesolowski, Quantifying correlated truncation errors in effective field theory. Phys. Rev. C 100(4), 044001 (2019). https://doi.org/10.1103/PhysRevC.100.044001arXiv: 1904.10581 [nucl-th]

  236. E. Epelbaum et al., Towards high-order calculations of three-nucleon scattering in chiral effective field theory. Eur. Phys. J. A 56(3), 92 (2020). https://doi.org/10.1140/epja/s10050-020-00102-2arXiv: 1907.03608 [nucl-th]

    Article  ADS  Google Scholar 

  237. B. Acharya, A. Ekström, L. Platter, Effective-field-theory predictions of the muon-deuteron capture rate. Phys. Rev. C 98(6), 065506 (2018). https://doi.org/10.1103/PhysRevC.98.065506arXiv: 1806.09481 [nucl-th]

  238. A.M. Gasparyan, E. Epelbaum, Nucleon-nucleon interaction in chiral EFT with a finite cut-off: explicit perturbative renormalization at next-to-leading order (2021). Phys. Rev. C 105(2), 024001 (2022)

    Article  ADS  Google Scholar 

  239. Y. Nosyk, D.R. Entem, R. Machleidt, Nucleon-nucleon potentials from \(\Delta \)-full chiral effective-field-theory and implications. Phys. Rev. C 104(5), 054001 (2021). https://doi.org/10.1103/PhysRevC.104.054001arXiv: 2107.06452 [nucl-th]

  240. M. Hoferichter, J. Ruiz de Elvira, B. Kubis, U.-G. Meißner, Matching pion-nucleon Roy–Steiner equations to chiral perturbation theory. Phys. Rev. Lett. 115(19), 192301 (2015). https://doi.org/10.1103/PhysRevLett.115.192301arXiv: 1507.07552 [nucl-th]

  241. M. Hoferichter, J. Ruiz de Elvira, B. Kubis, U.-G. Meißner, Roy–Steiner-equation analysis of pion–nucleon scattering. Phys. Rep. 625, 1–88 (2016). https://doi.org/10.1016/j.physrep.2016.02.002arXiv: 1510.06039 [hep-ph]

  242. V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga, D.R. Phillips, Precision calculation of the \(\pi ^{-}\) deuteron scattering length and its impact on threshold \(\pi \) N scatterings. Phys. Lett. B 694, 473–477 (2011). https://doi.org/10.1016/j.physletb.2010.10.028arXiv: 1003.4444 [nucl-th]

    Article  ADS  Google Scholar 

  243. V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga, D.R. Phillips, Precision calculation of threshold \(\pi ^-d\) scattering, \(\pi \)N scattering lengths, and the GMO sum rule. Nucl. Phys. A 872, 69–116 (2011). https://doi.org/10.1016/j.nuclphysa.2011.09.015arXiv: 1107.5509 [nucl-th]

    Article  ADS  Google Scholar 

  244. T. Strauch et al., Pionic deuterium. Eur. Phys. J. A 47, 88 (2011). https://doi.org/10.1140/epja/i2011-11088-1arXiv: 1011.2415 [nucl-ex]

    Article  ADS  Google Scholar 

  245. M. Hennebach et al. Hadronic shift in pionic hydrogen. Eur. Phys. J. A 50(12), (2014). [Erratum: Eur. Phys. J. A 55, 24 (2019)], p. 190. https://doi.org/10.1140/epja/i2014-14190-x. arXiv: 1406.6525 [nucl-ex]

  246. A. Hirtl et al., Redetermination of the strong-interaction width in pionic hydrogen. Eur. Phys. J. A 57(2), 70 (2021). https://doi.org/10.1140/epja/s10050-021-00387-x

    Article  ADS  Google Scholar 

  247. W.N. Cottingham, The neutron proton mass difference and electron scattering experiments. Ann. Phys. 25, 424–432 (1963). https://doi.org/10.1016/0003-4916(63)90023-X

  248. J. Gasser, H. Leutwyler, Implications of scaling for the proton–neutron mass-difference. Nucl. Phys. B 94, 269–310 (1975). https://doi.org/10.1016/0550-3213(75)90493-9

  249. J. Gasser, M. Hoferichter, H. Leutwyler, A. Rusetsky, Cottingham formula and nucleon polarisabilities. Eur. Phys. J. C 75.8 (2015). [Erratum: Eur. Phys. J. C 80, 353 (2020)], p. 375. https://doi.org/10.1140/epjc/s10052-015-3580-9. arXiv: 1506.06747 [hep-ph]

  250. J. Gasser, H. Leutwyler, A. Rusetsky, On the mass difference between proton and neutron. Phys. Lett. B 814, 136087 (2021). https://doi.org/10.1016/j.physletb.2021.136087arXiv: 2003.13612 [hep-ph]

  251. J. Gasser, H. Leutwyler, A. Rusetsky, Sum rule for the Compton amplitude and implications for the proton–neutron mass difference. Eur. Phys. J. C 80(12), 1121 (2020). https://doi.org/10.1140/epjc/s10052-020-08615-2arXiv: 2008.05806 [hep-ph]

  252. S. Borsanyi et al., Ab initio calculation of the neutron-proton mass difference. Science 347, 1452–1455 (2015). https://doi.org/10.1126/science.1257050arXiv: 1406.4088 [hep-lat]

    Article  ADS  Google Scholar 

  253. D.A. Brantley, B. Joo, E.V. Mastropas, E. Mereghetti, H. Monge-Camacho, B.C. Tiburzi, A. Walker-Loud, Strong isospin violation and chiral logarithms in the baryon spectrum (2016). arXiv: 1612.07733 [hep-lat]

  254. R. Horsley et al., Isospin splittings in the decuplet baryon spectrum from dynamical QCD+QED. J. Phys. G 46, 115004 (2019). https://doi.org/10.1088/1361-6471/ab32c1arXiv: 1904.02304 [hep-lat]

  255. V. Cirigliano, W. Dekens, J. de Vries, M. Hoferichter, E. Mereghetti, Toward complete leading-order predictions for neutrinoless double \(\beta \) Decay. Phys. Rev. Lett. 126(17), 172002 (2021). https://doi.org/10.1103/PhysRevLett.126.172002arXiv: 2012.11602 [nucl-th]

  256. V. Cirigliano, W. Dekens, J. de Vries, M. Hoferichter, E. Mereghetti, Determining the leading-order contact term in neutrinoless double \({\beta }\) decay. JHEP 05, 289 (2021). https://doi.org/10.1007/JHEP05(2021)289arXiv: 2102.03371 [nucl-th]

    Article  ADS  Google Scholar 

  257. V. Cirigliano, W. Dekens, J. De Vries, M.L. Graesser, E. Mereghetti, S. Pastore, U. Van Kolck, New leading contribution to neutrinoless double-\(\beta \) Decay. Phys. Rev. Lett. 120(20), 202001 (2018). https://doi.org/10.1103/PhysRevLett.120.202001arXiv: 1802.10097 [hep-ph]

  258. V. Cirigliano, W. Dekens, J. De Vries, M.L. Graesser, E. Mereghetti, S. Pastore, M. Piarulli, U. Van Kolck, R.B. Wiringa, Renormalized approach to neutrinoless double-\({\beta }\) decay. Phys. Rev. C 100(5), 055504 (2019). https://doi.org/10.1103/PhysRevC.100.055504arXiv: 1907.11254 [nucl-th]

  259. Z. Davoudi, S.V. Kadam, Path from lattice QCD to the short-distance contribution to \(0\nu {\beta }{\beta }\) decay with a light Majorana Neutrino. Phys. Rev. Lett. 126(15), 152003 (2021). https://doi.org/10.1103/PhysRevLett.126.152003arXiv: 2012.02083 [hep-lat]

  260. R. Wirth, J.M. Yao, H. Hergert, Ab initio calculation of the contact operator contribution in the standard mechanism for neutrinoless double beta decay. Phys. Rev. Lett. 127(24), 242502 (2021). https://doi.org/10.1103/PhysRevLett.127.242502arXiv: 2105.05415 [nucl-th]

  261. L. Jokiniemi, P. Soriano, J. Menéndez, Impact of the leading-order short-range nuclear matrix element on the neutrinoless double-beta decay of medium-mass and heavy nuclei. Phys. Lett. B 823, 136720 (2021). https://doi.org/10.1016/j.physletb.2021.136720arXiv: 2107.13354 [nucl-th]

  262. C.C. Chang et al., A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics. Nature 558(7708), 91–94 (2018). https://doi.org/10.1038/s41586-018-0161-8arXiv: 1805.12130 [hep-lat]

    Article  ADS  Google Scholar 

  263. R. Gupta, Y.-C. Jang, B. Yoon, H.-W. Lin, V. Cirigliano, T. Bhattacharya, Isovector charges of the nucleon from 2 + 1 + 1-flavor lattice QCD. Phys. Rev. D 98, 034503 (2018). https://doi.org/10.1103/PhysRevD.98.034503arXiv: 1806.09006 [hep-lat]

  264. Y. Aoki et al., FLAG Review 2021 (2021). arXiv: 2111.09849 [hep-lat]

  265. S. Dürr et al., Lattice computation of the nucleon scalar quark contents at the physical point. Phys. Rev. Lett. 116(17), 172001 (2016). https://doi.org/10.1103/PhysRevLett.116.172001arXiv: 1510.08013 [hep-lat]

  266. Y.-B. Yang, A. Alexandru, T. Draper, J. Liang, K.-F. Liu, \(\pi \)N and strangeness sigma terms at the physical point with chiral fermions. Phys. Rev. D 94(5), 054503 (2016). https://doi.org/10.1103/PhysRevD.94.054503arXiv: 1511.09089 [hep-lat]

  267. N. Yamanaka, S. Hashimoto, T. Kaneko, H. Ohki, Nucleon charges with dynamical overlap fermions. Phys. Rev. D 98(5), 054516 (2018). https://doi.org/10.1103/PhysRevD.98.054516arXiv: 1805.10507 [hep-lat]

  268. C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K. Jansen, G. Koutsou, A. Vaquero Aviles-Casco, Nucleon axial, tensor, and scalar charges and \(\sigma \)-terms in lattice QCD. Phys. Rev. D 102(5), 054517 (2020). https://doi.org/10.1103/PhysRevD.102.054517arXiv: 1909.00485 [hep-lat]

  269. S. Borsanyi, Z. Fodor, C. Hoelbling, L. Lellouch, K. K. Szabo, C. Torrero, L. Varnhorst, Abinitio calculation of the proton and the neutron’s scalar couplings for new physics searches (2020). arXiv: 2007.03319 [hep-lat]

  270. M. Hoferichter, J. Ruiz de Elvira, B. Kubis, U.-G. Meißner, High-precision determination of the Pion–Nucleon \(\sigma \) term from Roy–Steiner equations. Phys. Rev. Lett. 115, 092301 (2015). https://doi.org/10.1103/PhysRevLett.115.092301arXiv: 1506.04142 [hep-ph]

  271. M. Hoferichter, J. Ruiz de Elvira, B. Kubis, U.-G. Meißner, Remarks on the pion–nucleon -term. Phys. Lett. B 760, 74–78 (2016). https://doi.org/10.1016/j.physletb.2016.06.038arXiv: 1602.07688 [hep-lat]

    Article  ADS  Google Scholar 

  272. J. Ruiz de Elvira, M. Hoferichter, B. Kubis, U.-G. Meißner, Extracting the \(\sigma \)-term from low-energy pion–nucleon scattering. J. Phys. G 45(2), 024001 (2018). https://doi.org/10.1088/1361-6471/aa9422arXiv: 1706.01465 [hep-ph]

  273. R. Gupta, S. Park, M. Hoferichter, E. Mereghetti, B. Yoon, T. Bhattacharya, Pion–nucleon sigma term from lattice QCD. Phys. Rev. Lett. 127(24), 242002 (2021). https://doi.org/10.1103/PhysRevLett.127.242002arXiv: 2105.12095 [hep-lat]

  274. T.P. Cheng, R.F. Dashen, Is SU(2) x SU(2) a better symmetry than SU(3)? Phys. Rev. Lett. 26, 594 (1971). https://doi.org/10.1103/PhysRevLett.26.594

    Article  ADS  Google Scholar 

  275. V. Cirigliano, A. Crivellin, M. Hoferichter, No-go theorem for nonstandard explanations of the \(\tau \rightarrow K_S\pi \nu _\tau \) CP asymmetry. Phys. Rev. Lett. 120(14), 141803 (2018). https://doi.org/10.1103/PhysRevLett.120.141803arXiv: 1712.06595 [hep-ph]

  276. L. Von Detten, F. Noël, C. Hanhart, M. Hoferichter, B. Kubis, On the scalar \(\pi K\) form factor beyond the elastic region. Eur. Phys. J. C 81(5), 420 (2021). https://doi.org/10.1140/epjc/s10052021-09169-7arXiv: 2103.01966 [hep-ph]

    Article  ADS  Google Scholar 

  277. M. Hoferichter, B. Kubis, J. Ruiz de Elvira, H.-W. Hammer, U.-G. Meißner, On the \(\pi \pi \) continuum in the nucleon form factors and the proton radius puzzle. Eur. Phys. J. A 52(11), 331 (2016). https://doi.org/10.1140/epja/i2016-16331-7arXiv: 1609.06722 [hep-ph]

    Article  ADS  Google Scholar 

  278. M. Hoferichter, B. Kubis, J. Ruiz de Elvira, P. Stoffer, Nucleon matrix elements of the antisymmetric quark tensor. Phys. Rev. Lett. 122(12) (2019). [Erratum: Phys. Rev. Lett. 124, 199901 (2020)], p. 122001. https://doi.org/10.1103/PhysRevLett.122.122001

  279. G. ’t Hooft, A planar diagram theory for strong interactions. Nucl. Phys. B 72 (1974). Ed. by J. C. Taylor, p. 461. https://doi.org/10.1016/0550-3213(74)90154-0

  280. M.K. Banerjee, T.D. Cohen, B.A. Gelman, The nucleon–nucleon interaction and large N(c) QCD. Phys. Rev. C 65, 034011 (2002). https://doi.org/10.1103/PhysRevC.65.034011arXiv: hep-ph/0109274

  281. A.V. Belitsky, T.D. Cohen, The large N(c) nuclear potential puzzle. Phys. Rev. C 65, 064008 (2002). https://doi.org/10.1103/PhysRevC.65.064008arXiv: hep-ph/0202153

  282. D.O. Riska, Dynamical interpretation of the nucleon-nucleon interaction and exchange currents in the large N(C) limit. Nucl. Phys. A 710, 55–82 (2002). https://doi.org/10.1016/S0375-9474(02)01091-6arXiv: nucl-th/0204016

    Article  ADS  Google Scholar 

  283. D.R. Phillips, D. Samart, C. Schat, Parity-violating nucleon–nucleon force in the 1/\(N_c\) expansion. Phys. Rev. Lett. 114(6), 062301 (2015). https://doi.org/10.1103/PhysRevLett.114.062301arXiv: 1410.1157 [nucl-th]

  284. E. Epelbaum, A.M. Gasparyan, H. Krebs, C. Schat, Three-nucleon force at large distances: insights from chiral effective field theory and the large-Nc expansion. Eur. Phys. J. A 51(3), 26 (2015). https://doi.org/10.1140/epja/i2015-15026-yarXiv: 1411.3612 [nucl-th]

  285. D. Samart, C. Schat, M.R. Schindler, D.R. Phillips, Time-reversal-invariance-violating nucleon–nucleon potential in the \(1/N_c\) expansion. Phys. Rev. C 94(2), 024001 (2016). https://doi.org/10.1103/PhysRevC.94.024001arXiv: 1604.01437 [nucl-th]

  286. J. Vanasse, A. David, Time-reversal-invariance violation in the \(N\!d\) system and large-\(N_C\) (2019). arXiv: 1910.03133 [nucl-th]

  287. T.R. Richardson, M.R. Schindler, Large-Nc analysis of magnetic and axial two-nucleon currents in pionless effective field theory. Phys. Rev. C 101(5), 055505 (2020). https://doi.org/10.1103/PhysRevC.101.055505arXiv: 2002.00986 [nucl-th]

  288. T.R. Richardson, M.R. Schindler, S. Pastore, R.P. Springer, Large-\(N_c\) analysis of magnetic and axial two-nucleon currents in pionless effective field theory. Phys. Rev. C 103(5), 055501 (2021). https://doi.org/10.1103/PhysRevC.103.055501arXiv: 2102.02184 [nucl-th]

  289. M.L. Wagman, F. Winter, E. Chang, Z. Davoudi, W. Detmold, K. Orginos, M.J. Savage, P.E. Shanahan, Baryon–baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics. Phys. Rev. D 96(11), 114510 (2017). https://doi.org/10.1103/PhysRevD.96.114510arXiv: 1706.06550 [hep-lat]

  290. M. Illa et al., Low-energy scattering and effective interactions of two baryons at \(m_{\pi }\sim 450\) MeV from lattice quantum chromodynamics. Phys. Rev. D 103(5), 054508 (2021). https://doi.org/10.1103/PhysRevD.103.054508arXiv: 2009.12357 [hep-lat]

  291. G. Parisi, The strategy for computing the hadronic mass spectrum. Phys. Rep. 103 (1984). Ed. by C. Itzykson, Y. Pomeau, and N. Sourlas, pp. 203–211. https://doi.org/10.1016/0370-1573(84)90081-4

  292. G. P. Lepage, The Analysis of Algorithms for Lattice Field Theory. Theoretical Advanced Study Institute in Elementary Particle Physics (1989)

  293. M.L. Wagman, M.J. Savage, Statistics of baryon correlation functions in lattice QCD. Phys. Rev. D 96(11), 114508 (2017). https://doi.org/10.1103/PhysRevD.96.114508arXiv: 1611.07643 [hep-lat]

  294. W. Detmold, K. Orginos, Nuclear correlation functions in lattice QCD. Phys. Rev. D 87(11), 114512 (2013). https://doi.org/10.1103/PhysRevD.87.114512arXiv: 1207.1452 [hep-lat]

  295. S.R. Beane, P.F. Bedaque, K. Orginos, M.J. Savage, Nucleon–nucleon scattering from fully-dynamical lattice QCD. Phys. Rev. Lett. 97, 012001 (2006). https://doi.org/10.1103/PhysRevLett.97.012001arXiv: hep-lat/0602010

  296. S.R. Beane, E. Chang, S.D. Cohen, W. Detmold, H.-W. Lin, T.C. Luu, K. Orginos, A. Parreno, M.J. Savage, A. Walker-Loud, Hyperon–nucleon interactions and the composition of dense nuclear matter from quantum chromodynamics. Phys. Rev. Lett. 109, 172001 (2012). https://doi.org/10.1103/PhysRevLett.109.172001arXiv: 1204.3606 [hep-lat]

  297. M. Luscher, Volume dependence of the energy spectrum in massive quantum field theories. 2. Scattering states. Commun. Math. Phys. 105, 153–188 (1986). https://doi.org/10.1007/BF01211097

  298. R.A. Briceño, J.J. Dudek, R.D. Young, Scattering processes and resonances from lattice QCD. Rev. Mod. Phys. 90(2), 025001 (2018). https://doi.org/10.1103/RevModPhys.90.025001arXiv: 1706.06223 [hep-lat]

  299. M.T. Hansen, S.R. Sharpe, Lattice QCD and three-particle decays of resonances. Ann. Rev. Nucl. Part. Sci. 69, 65–107 (2019). https://doi.org/10.1146/annurev-nucl-101918-023723arXiv: 1901.00483 [hep-lat]

  300. S.R. Beane et al., Nucleon–nucleon scattering parameters in the limit of SU(3) flavor symmetry. Phys. Rev. C 88(2), 024003 (2013). https://doi.org/10.1103/PhysRevC.88.024003arXiv: 1301.5790 [hep-lat]

  301. E. Berkowitz, T. Kurth, A. Nicholson, B. Joo, E. Rinaldi, M. Strother, P.M. Vranas, A. Walker-Loud, Two-nucleon higher partial-wave scattering from lattice QCD. Phys. Lett. B 765, 285–292 (2017). https://doi.org/10.1016/j.physletb.2016.12.024arXiv: 1508.00886 [hep-lat]

  302. S.R. Beane, E. Chang, S.D. Cohen, W. Detmold, H.W. Lin, T.C. Luu, K. Orginos, A. Parreno, M.J. Savage, A. Walker-Loud, Light nuclei and hypernuclei from quantum chromodynamics in the limit of SU(3) flavor symmetry. Phys. Rev. D 87(3), 034506 (2013). https://doi.org/10.1103/PhysRevD.87.034506arXiv: 1206.5219 [hep-lat]

  303. N. Barnea, L. Contessi, D. Gazit, F. Pederiva, U. van Kolck, Effective field theory for lattice nuclei. Phys. Rev. Lett. 114(5), 052501 (2015). https://doi.org/10.1103/PhysRevLett.114.052501arXiv: 1311.4966 [nucl-th]

  304. S.R. Beane, S.D. Cohen, W. Detmold, H.-W. Lin, M.J. Savage, Nuclear \(\sigma \) terms and scalar-isoscalar WIMP-nucleus interactions from lattice QCD. Phys. Rev. D 89, 074505 (2014). https://doi.org/10.1103/PhysRevD.89.074505arXiv: 1306.6939 [hep-ph]

  305. S.R. Beane, E. Chang, S. Cohen, W. Detmold, H.W. Lin, K. Orginos, A. Parreno, M.J. Savage, B.C. Tiburzi, Magnetic moments of light nuclei from lattice quantum chromodynamics. Phys. Rev. Lett. 113(25), 252001 (2014). https://doi.org/10.1103/PhysRevLett.113.252001arXiv: 1409.3556 [hep-lat]

  306. S.R. Beane, E. Chang, W. Detmold, K. Orginos, A. Parreño, M.J. Savage, B.C. Tiburzi, Ab initio calculation of the \(np\rightarrow d\gamma \) radiative capture process. Phys. Rev. Lett. 115(13), 132001 (2015). https://doi.org/10.1103/PhysRevLett.115.132001arXiv: 1505.02422 [hep-lat]

  307. E. Chang, W. Detmold, K. Orginos, A. Parreno, M.J. Savage, B.C. Tiburzi, S.R. Beane, Magnetic structure of light nuclei from lattice QCD. Phys. Rev. D 92(11), 114502 (2015). https://doi.org/10.1103/PhysRevD.92.114502arXiv: 1506.05518 [hep-lat]

  308. W. Detmold, K. Orginos, A. Parreno, M.J. Savage, B.C. Tiburzi, S.R. Beane, E. Chang, Unitary limit of two-nucleon interactions in strong magnetic fields. Phys. Rev. Lett. 116(11), 112301 (2016). https://doi.org/10.1103/PhysRevLett.116.112301arXiv: 1508.05884 [hep-lat]

  309. M.J. Savage, P.E. Shanahan, B.C. Tiburzi, M.L. Wagman, F. Winter, S.R. Beane, E. Chang, Z. Davoudi, W. Detmold, K. Orginos, Proton–proton fusion and tritium \(\beta \) decay from lattice quantum chromodynamics. Phys. Rev. Lett. 119(6), 062002 (2017). https://doi.org/10.1103/PhysRevLett.119.062002arXiv: 1610.04545 [hep-lat]

  310. P.E. Shanahan, B.C. Tiburzi, M.L. Wagman, F. Winter, E. Chang, Z. Davoudi, W. Detmold, K. Orginos, M.J. Savage, Isotensor axial polarizability and lattice QCD input for nuclear double-\(\beta \) decay phenomenology. Phys. Rev. Lett. 119(6), 062003062003 (2017). https://doi.org/10.1103/PhysRevLett.119.062003arXiv: 1701.03456 [hep-lat]

  311. E. Chang, Z. Davoudi, W. Detmold, A.S. Gambhir, K. Orginos, M.J. Savage, P.E. Shanahan, M.L. Wagman, F. Winter, Scalar, axial, and tensor interactions of light nuclei from lattice QCD. Phys. Rev. Lett. 120(15), 152002 (2018). https://doi.org/10.1103/PhysRevLett.120.152002arXiv: 1712.03221 [hep-lat]

  312. B.C. Tiburzi, M.L. Wagman, F. Winter, E. Chang, Z. Davoudi, W. Detmold, K. Orginos, M.J. Savage, P.E. Shanahan, Double-\(\beta \) decay matrix elements from lattice quantum chromodynamics. Phys. Rev. D 96(5), 054505 (2017). https://doi.org/10.1103/PhysRevD.96.054505arXiv: 1702.02929 [hep-lat]

  313. Z. Davoudi, W. Detmold, K. Orginos, A. Parreño, M.J. Savage, P. Shanahan, M.L. Wagman, Nuclear matrix elements from lattice QCD for electroweak and beyond-Standard-Model processes. Phys. Rep. 900, 1–74 (2021). https://doi.org/10.1016/j.physrep.2020.10.004arXiv: 2008.11160 [hep-lat]

  314. W. Detmold, P.E. Shanahan, Few-nucleon matrix elements in pionless effective field theory in a finite volume. Phys. Rev. D 103(7), 074503 (2021). https://doi.org/10.1103/PhysRevD.103.074503arXiv: 2102.04329 [nucl-th]

  315. A. Parreño, P.E. Shanahan, M.L. Wagman, F. Winter, E. Chang, W. Detmold, M. Illa, Axial charge of the triton from lattice QCD. Phys. Rev. D 103(7), 074511 (2021). https://doi.org/10.1103/PhysRevD.103.074511arXiv: 2102.03805 [hep-lat]

  316. W. Detmold, M. Illa, D.J. Murphy, P. Oare, K. Orginos, P.E. Shanahan, M.L. Wagman, F. Winter, Lattice QCD constraints on the Parton distribution functions of \(^3\)He. Phys. Rev. Lett. 126(20), 202001 (2021). https://doi.org/10.1103/PhysRevLett.126.202001arXiv: 2009.05522 [hep-lat]

  317. T. Doi, M.G. Endres, Unified contraction algorithm for multi-baryon correlators on the lattice. Comput. Phys. Commun. 184, 117 (2013). https://doi.org/10.1016/j.cpc.2012.09.004arXiv: 1205.0585 [hep-lat]

    Article  ADS  MathSciNet  Google Scholar 

  318. N. Ishii, S. Aoki, T. Hatsuda, The nuclear force from lattice QCD. Phys. Rev. Lett. 99, 022001 (2007). https://doi.org/10.1103/PhysRevLett.99.022001arXiv: nucl-th/0611096

  319. T. Inoue, N. Ishii, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, K. Murano, H. Nemura, K. Sasaki, Bound H-dibaryon in flavor SU(3) limit of lattice QCD. Phys. Rev. Lett. 106, 162002 (2011). https://doi.org/10.1103/PhysRevLett.106.162002arXiv: 1012.5928 [hep-lat]

  320. S. Aoki, T. Doi, Lattice QCD and baryon–baryon interactions: HAL QCD method. Front. Phys. 8, 307 (2020). https://doi.org/10.3389/fphy.2020.00307arXiv: 2003.10730 [hep-lat]

  321. S.R. Beane, W. Detmold, K. Orginos, M.J. Savage, Nuclear physics from lattice QCD. Prog. Part. Nucl. Phys. 66, 1–40 (2011). https://doi.org/10.1016/j.ppnp.2010.08.002arXiv: 1004.2935 [hep-lat]

  322. M.C. Birse, Potential problems with interpolating fields. Eur. Phys. J. A 53(11), 223 (2017). https://doi.org/10.1140/epja/i2017-12425-0arXiv: 1208.4807 [nucl-th]

  323. T. Yamazaki, Y. Kuramashi, Relation between scattering amplitude and Bethe–Salpeter wave function in quantum field theory. Phys. Rev. D 96(11), 114511 (2017). https://doi.org/10.1103/PhysRevD.96.114511arXiv: 1709.09779 [hep-lat]

  324. T. Iritani, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, H. Nemura, K. Sasaki, Systematics of the HAL QCD potential at low energies in lattice QCD. Phys. Rev. D 99(1), 014514 (2019). https://doi.org/10.1103/PhysRevD.99.014514arXiv: 1805.02365 [hep-lat]

  325. C. Drischler, W. Haxton, K. McElvain, E. Mereghetti, A. Nicholson, P. Vranas, A. Walker-Loud, Towards grounding nuclear physics in QCD. Prog. Part. Nucl. Phys. 121, 103888 (2021). https://doi.org/10.1016/j.ppnp.2021.103888arXiv: 1910.07961 [nucl-th]

  326. A. Francis, J.R. Green, P.M. Junnarkar, C. Miao, T.D. Rae, H. Wittig, Lattice QCD study of the H dibaryon using hexaquark and two-baryon interpolators. Phys. Rev. D 99(7), 074505 (2019). https://doi.org/10.1103/PhysRevD.99.074505arXiv: 1805.03966 [hep-lat]

  327. M. Peardon, J. Bulava, J. Foley, C. Morningstar, J. Dudek, R.G. Edwards, B. Joo, H.-W. Lin, D.G. Richards, K.J. Juge, A Novel quark-field creation operator construction for hadronic physics in lattice QCD. Phys. Rev. D 80, 054506 (2009). https://doi.org/10.1103/PhysRevD.80.054506arXiv: 0905.2160 [hep-lat]

  328. J.R. Green, A.D. Hanlon, P.M. Junnarkar, H. Wittig, Weakly bound H dibaryon from SU(3)-flavor-symmetric QCD. Phys. Rev. Lett. 127(24), 242003 (2021). https://doi.org/10.1103/PhysRevLett.127.242003arXiv: 2103.01054 [hep-lat]

  329. B. Hörz et al., Two-nucleon S-wave interactions at the \(SU(3)\) flavor-symmetric point with \(m_{ud}\simeq m_s^{\rm phys}\): A first lattice QCD calculation with the stochastic Laplacian Heaviside method. Phys. Rev. C 103(1), 014003 (2021). https://doi.org/10.1103/PhysRevC.103.014003arXiv: 2009.11825 [hep-lat]

  330. C. Morningstar, J. Bulava, J. Foley, K.J. Juge, D. Lenkner, M. Peardon, C.H. Wong, Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD. Phys. Rev. D 83, 114505114505 (2011). https://doi.org/10.1103/PhysRevD.83.114505arXiv: 1104.3870 [hep-lat]

  331. S. Amarasinghe, R. Baghdadi, Z. Davoudi, W. Detmold, M. Illa, A. Parreno, A.V. Pochinsky, P.E. Shanahan, M.L. Wagman, A variational study of two-nucleon systems with lattice QCD (2021). arXiv: 2108.10835 [hep-lat]

  332. W. Detmold, D.J. Murphy, A.V. Pochinsky, M.J. Savage, P.E. Shanahan, M.L. Wagman, Sparsening algorithm for multihadron lattice QCD correlation functions. Phys. Rev. D 104(3), 034502 (2021). https://doi.org/10.1103/PhysRevD.104.034502arXiv: 1908.07050 [hep-lat]

  333. T. Yamazaki, K.-I. Ishikawa, Y. Kuramashi, A. Ukawa, Helium nuclei, deuteron and dineutron in 2+1 flavor lattice QCD. Phys. Rev. D 86, 074514 (2012). https://doi.org/10.1103/PhysRevD.86.074514arXiv: 1207.4277 [hep-lat]

  334. K. Orginos, A. Parreno, M.J. Savage, S.R. Beane, E. Chang, W. Detmold, Two nucleon systems at \(m_\pi \sim 450\) MeV from lattice QCD. Phys. Rev. D 92(11) (2015). [Erratum: Phys. Rev. D 102, 039903 (2020)], p. 114512. https://doi.org/10.1103/PhysRevD.92.114512. arXiv: 1508.07583 [hep-lat]

  335. S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, K. Murano, H. Nemura, K. Sasaki, Lattice QCD approach to nuclear physics. PTEP 2012, 01A105 (2012). https://doi.org/10.1093/ptep/pts010arXiv: 1206.5088 [hep-lat]

  336. T. Inoue, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, N. Ishii, K. Murano, H. Nemura, K. Sasaki, Two-baryon potentials and H-dibaryon from 3-flavor lattice QCD simulations. Nucl. Phys. A 881 (2012). Ed. by A. Gal, O. Hashimoto, and J. Pochodzalla, pp. 28–43. https://doi.org/10.1016/j.nuclphysa.2012.02.008. arXiv: 1112.5926 [hep-lat]

  337. N. Ishii, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, K. Murano, H. Nemura, K. Sasaki, Hadron–hadron interactions from imaginary-time Nambu–Bethe–Salpeter wave function on the lattice. Phys. Lett. B 712, 437–441 (2012). https://doi.org/10.1016/j.physletb.2012.04.076arXiv: 1203.3642 [hep-lat]

  338. K. Rummukainen, S.A. Gottlieb, Resonance scattering phase shifts on a non-rest-frame lattice. Nucl. Phys. B 450, 397–436 (1995). https://doi.org/10.1016/0550-3213(95)00313-HarXiv: hep-lat/9503028

    Article  ADS  Google Scholar 

  339. R.A. Briceño, Z. Davoudi, T.C. Luu, Two-nucleon systems in a finite volume: (I) quantization conditions. Phys. Rev. D 88(3), 034502 (2013). https://doi.org/10.1103/PhysRevD.88.034502arXiv: 1305.4903 [hep-lat]

  340. R.A. Briceño, Two-particle multichannel systems in a finite volume with arbitrary spin. Phys. Rev. D 89(7), 074507 (2014). https://doi.org/10.1103/PhysRevD.89.074507arXiv: 1401.3312 [hep-lat]

  341. T. Iritani et al., Mirage in temporal correlation functions for baryon–baryon interactions in lattice QCD. JHEP 10, 101 (2016). https://doi.org/10.1007/JHEP10(2016)101arXiv: 1607.06371 [hep-lat]

  342. M. Luscher, U. Wolf, How to calculate the elastic scattering matrix in two-dimensional quantum field theories by numerical simulation. Nucl. Phys. B 339, 222–252 (1990). https://doi.org/10.1016/0550-3213(90)90540-T

  343. B. Blossier, M. Della Morte, G. von Hippel, T. Mendes, R. Sommer, On the generalized eigenvalue method for energies and matrix elements in lattice field theory. JHEP 04, 094 (2009). https://doi.org/10.1088/1126-6708/2009/04/094arXiv: 0902.1265 [hep-lat]

    Article  Google Scholar 

  344. T. Iritani, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, H. Nemura, K. Sasaki, Consistency between Lüscher’s finite volume method and HAL QCD method for two-baryon systems in lattice QCD. JHEP 03, 007 (2019). https://doi.org/10.1007/JHEP03(2019)007arXiv: 1812.08539 [hep-lat]

    Article  ADS  Google Scholar 

  345. D.J. Wilson, R.A. Briceño, J.J. Dudek, R.G. Edwards, C.E. Thomas, Coupled \(\pi \pi \), \(K\bar{K}\) scattering in \(P\)-wave and the \(\rho \) resonance from lattice QCD. Phys. Rev. D 92(9), 094502 (2015). https://doi.org/10.1103/PhysRevD.92.094502arXiv: 1507.02599 [hep-ph]

  346. T. Iritani, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, H. Nemura, K. Sasaki, Are two nucleons bound in lattice QCD for heavy quark masses? Consistency check with Lüscher’s finite volume formula. Phys. Rev. D 96(3), 034521 (2017). https://doi.org/10.1103/PhysRevD.96.034521arXiv: 1703.07210 [hep-lat]

  347. A. Nicholson et al., Toward a resolution of the NN controversy. PoS LATTICE2021 (2021), p. 098. https://doi.org/10.22323/1.396.0098. arXiv: 2112.04569 [hep-lat]

  348. S.R. Beane et al., Evidence for a bound H-dibaryon from lattice QCD. Phys. Rev. Lett. 106, 162001 (2011). https://doi.org/10.1103/PhysRevLett.106.162001arXiv: 1012.3812 [hep-lat]

  349. J.R. Green, A.D. Hanlon, P.M. Junnarkar, H. Wittig, Continuum limit of baryon–baryon scattering with SU(3) flavor symmetry. PoS LATTICE2021, p. 294 (2021). https://doi.org/10.22323/1.396.0294. arXiv: 2111.09675 [hep-lat]

  350. C.Körber, E. Berkowitz, T. Luu, Renormalization of a contact interaction on a lattice (2019). arXiv: 1912.04425 [hep-lat]

  351. R.A. Briceño, Z. Davoudi, T. Luu, M.J. Savage, Two-nucleon systems in a finite volume. II. \(^3S_1-^3D_1\) coupled channels and the deuteron. Phys. Rev. D 88(11), 114507 (2013). https://doi.org/10.1103/PhysRevD.88.114507arXiv: 1309.3556 [hep-lat]

  352. R.A. Briceño, M.T. Hansen, A.W. Jackura, Consistency checks for two-body finite-volume matrix elements: I. Conserved currents and bound states. Phys. Rev. D 100(11), 114505 (2019). https://doi.org/10.1103/PhysRevD.100.114505arXiv: 1909.10357 [hep-lat]

  353. L. Meng, E. Epelbaum, Two-particle scattering from finite-volume quantization conditions using the plane wave basis. JHEP 10, 051 (2021). https://doi.org/10.1007/JHEP10(2021)051arXiv: 2108.02709 [hep-lat]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  354. R.A. Briceño, M.T. Hansen, Relativistic, model-independent, multichannel \(2 \rightarrow 2\) transition amplitudes in a finite volume. Phys. Rev. D 94(1), 013008 (2016). https://doi.org/10.1103/PhysRevD.94.013008arXiv: 1509.08507 [hep-lat]

  355. A. Baroni, R.A. Briceño, M.T. Hansen, F.G. Ortega-Gama, Form factors of two-hadron states from a covariant finite-volume formalism. Phys. Rev. D 100(3), 034511 (2019). https://doi.org/10.1103/PhysRevD.100.034511arXiv: 1812.10504 [hep-lat]

  356. L. Lellouch, M. Luscher, Weak transition matrix elements from finite volume correlation functions. Commun. Math. Phys. 219, 31–44 (2001). https://doi.org/10.1007/s002200100410arXiv: hep-lat/0003023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  357. R.A. Briceño, M.T. Hansen, A. Walker-Loud, Multichannel \(1 \rightarrow 2\) transition amplitudes in a finite volume. Phys. Rev. D 91(3), 034501 (2015). https://doi.org/10.1103/PhysRevD.91.034501arXiv: 1406.5965 [hep-lat]

  358. R.A. Briceño, M.T. Hansen, A.W. Jackura, Consistency checks for two-body finite-volume matrix elements: II. Perturbative Systems. Phys. Rev. D 101(9), 114505 (2020). https://doi.org/10.1103/PhysRevD.101.094508arXiv: 2002.00023 [hep-lat]

  359. C.J. Shultz, J.J. Dudek, R.G. Edwards, Excited meson radiative transitions from lattice QCD using variationally optimized operators. Phys. Rev. D 91(11), 114501 (2015). https://doi.org/10.1103/PhysRevD.91.114501arXiv: 1501.07457 [hep-lat]

  360. R.A. Briceño, A.W. Jackura, F.G. Ortega-Gama, K.H. Sherman, On-shell representations of two-body transition amplitudes: single external current. Phys. Rev. D 103(11), 114512 (2021). https://doi.org/10.1103/PhysRevD.103.114512arXiv: 2012.13338 [hep-lat]

  361. X. Feng, L.-C. Jin, Z.-Y. Wang, Z. Zhang, Finite-volume formalism in the \(2 \begin{array}{c}H_I+H_I\\ \longrightarrow \end{array}2\) transition: an application to the lattice QCD calculation of double beta decays. Phys. Rev. D 103(3), 034508 (2021). https://doi.org/10.1103/PhysRevD.103.034508arXiv: 2005.01956 [hep-lat]

  362. R.A. Briceño, Z. Davoudi, M.T. Hansen, M.R. Schindler, A. Baroni, Long-range electroweak amplitudes of single hadrons from Euclidean finite-volume correlation functions. Phys. Rev. D 101(1), 014509 (2020). https://doi.org/10.1103/PhysRevD.101.014509arXiv: 1911.04036 [hep-lat]

  363. Z. Davoudi, S.V. Kadam, Two-neutrino double-\(\beta \) decay in pionless effective field theory from a Euclidean finite-volume correlation function. Phys. Rev. D 102(11), 114521 (2020). https://doi.org/10.1103/PhysRevD.102.114521arXiv: 2007.15542 [hep-lat]

  364. Z. Davoudi, S.V. Kadam, On the extraction of low-energy constants of single- and double-\(\beta \) decays from lattice QCD: a sensitivity analysis (2021). arXiv: 2111.11599 [hep-lat]

  365. M.T. Hansen, S.R. Sharpe, Expressing the three-particle finite-volume spectrum in terms of the three-to-three scattering amplitude. Phys. Rev. D 92(11), 114509 (2015). https://doi.org/10.1103/PhysRevD.92.114509arXiv: 1504.04248 [hep-lat]

  366. M. Mai, M. Döring, Three-body unitarity in the finite volume. Eur. Phys. J. A 53(12), 240 (2017). https://doi.org/10.1140/epja/i2017-12440-1arXiv: 1709.08222 [hep-lat]

  367. R.A. Briceño, Z. Davoudi, Three-particle scattering amplitudes from a finite volume formalism. Phys. Rev. D 87(9), 094507 (2013). https://doi.org/10.1103/PhysRevD.87.094507arXiv: 1212.3398 [hep-lat]

  368. H.-W. Hammer, J.-Y. Pang, A. Rusetsky, Three particle quantization condition in a finite volume: 2. General formalism and the analysis of data. JHEP 10, 115 (2017). https://doi.org/10.1007/JHEP10(2017)115arXiv: 1707.02176 [hep-lat]

  369. B. Hörz, A. Hanlon, Two-and three-pion finite-volume spectra at maximal isospin from lattice QCD. Phys. Rev. Lett. 123(14), 142002 (2019). https://doi.org/10.1103/PhysRevLett.123.142002arXiv: 1905.04277 [hep-lat]

  370. T.D. Blanton, A.D. Hanlon, B. Hörz, C. Morningstar, F. Romero-López, S.R. Sharpe, Interactions of two and three mesons including higher partial waves from lattice QCD. JHEP 10, 023 (2021). https://doi.org/10.1007/JHEP10(2021)023

    Article  ADS  Google Scholar 

  371. M. Mai, M. Doring, Finite-volume spectrum of \(\pi ^+\pi ^+\) and \(\pi ^+\pi ^+\pi ^+\) systems. Phys. Rev. Lett. 122(6), 062503 (2019). https://doi.org/10.1103/PhysRevLett.122.062503arXiv: 1807.04746 [hep-lat]

  372. T.D. Blanton, F. Romero-López, S.R. Sharpe, I =3 Three-pion scattering amplitude from lattice QCD. Phys. Rev. Lett. 124(3), 032001 (2020). https://doi.org/10.1103/PhysRevLett.124.032001arXiv: 1909.02973 [hep-lat]

  373. C. Culver, M. Mai, R. Brett, A. Alexandru, M. Döring, Three pion spectrum in the I =3 channel from lattice QCD. Phys. Rev. D 101(11), 114507 (2020). https://doi.org/10.1103/PhysRevD.101.114507arXiv: 1911.09047 [hep-lat]

  374. M.T. Hansen, R.A. Briceño, R.G. Edwards, C.E. Thomas, D.J. Wilson, Energy-dependent \(\pi ^+ \pi ^+ \pi ^+\) scattering amplitude from QCD. Phys. Rev. Lett. 126, 012001 (2021). https://doi.org/10.1103/PhysRevLett.126.012001arXiv: 2009.04931 [hep-lat]

  375. T.D. Blanton, S.R. Sharpe, Three-particle finite-volume formalism for \(\pi ^+\pi ^+K^+\) and related systems. Phys. Rev. D 104(3), 034509 (2021). https://doi.org/10.1103/PhysRevD.104.034509arXiv: 2105.12094 [hep-lat]

  376. T.D. Blanton, S.R. Sharpe, Alternative derivation of the relativistic three-particle quantization condition. Phys. Rev. D 102(5), 054520 (2020). https://doi.org/10.1103/PhysRevD.102.054520arXiv: 2007.16188 [hep-lat]

  377. M.T. Hansen, F. Romero-López, and S.R. Sharpe. Generalizing the relativistic quantization condition to include all three-pion isospin channels. JHEP 07 (2020). [Erratum: JHEP 02, 014 (2021)], p. 047. https://doi.org/10.1007/JHEP07(2020)047. arXiv: 2003.10974 [hep-lat]

  378. R.A. Briceño, M.T. Hansen, S.R. Sharpe, Relating the finite-volume spectrum and the two-and-three-particle S matrix for relativistic systems of identical scalar particles. Phys. Rev. D 95(7), 074510 (2017). https://doi.org/10.1103/PhysRevD.95.074510arXiv: 1701.07465 [hep-lat]

  379. F. Romero-López, S.R. Sharpe, T.D. Blanton, R.A. Briceño, M.T. Hansen, Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states. JHEP 10, 007 (2019). https://doi.org/10.1007/JHEP10(2019)007arXiv: 1908.02411 [hep-lat]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  380. A.W. Jackura, R.A. Briceño, S.M. Dawid, M.H.E. Islam, C. McCarty, Solving relativistic three-body integral equations in the presence of bound states. Phys. Rev. D 104(1), 014507 (2021). https://doi.org/10.1103/PhysRevD.104.014507arXiv: 2010.09820 [hep-lat]

  381. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008). https://doi.org/10.1103/RevModPhys.80.517arXiv: quant-ph/0703044

    Article  ADS  MathSciNet  MATH  Google Scholar 

  382. K. Eckert, J. Schliemann, D. Bruß, M. Lewenstein, Quantum correlations in systems of indistinguishable particles. Ann. Phys. 299(1), 88–127 (2002). https://doi.org/10.1006/aphy.2002.6268

  383. F. Benatti, R. Floreanini, F. Franchini, U. Marzolino, Entanglement in indistinguishable particle systems. Phys. Rep. 878 (2020). Entanglement in indistinguishable particle systems, pp. 1–27. ISSN: 0370-1573. https://doi.org/10.1016/j.physrep.2020.07.003. https://www.sciencedirect.com/science/article/pii/S0370157320302520

  384. T. Papenbrock, D.J. Dean, Factorization of shell model ground states. Phys. Rev. C 67, 051303 (2003). https://doi.org/10.1103/PhysRevC.67.051303arXiv: nucl-th/0301006

  385. T. Papenbrock, A. Juodagalvis, D.J. Dean, Solution of large scale nuclear structure problems by wave function factorization. Phys. Rev. C 69(2004). https://doi.org/10.1103/PhysRevC.69.024312arXiv: nucl-th/0308027

  386. S.R. White, Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992). https://doi.org/10.1103/PhysRevLett.69.2863

  387. J. Dukelsky, S. Pittel, S.S. Dimitrova, M.V. Stoitsov, The density matrix renormalization group method and large scale nuclear shell model calculations. Phys. Rev. C 65, 054319 (2002). https://doi.org/10.1103/PhysRevC.65.054319arXiv: nucl-th/0202048

  388. J. Dukelsky, S. Pittel, The density matrix renormalization group for finite Fermi systems. Rep. Prog. Phys. 67, 513–552 (2004). https://doi.org/10.1088/0034-4885/67/4/R02arXiv: cond-mat/0404212

  389. B. Thakur, S. Pittel, N. Sandulescu, Density matrix renormalization group study of Cr-48 and Ni-56. Phys. Rev. C 78(2008). https://doi.org/10.1103/PhysRevC.78.041303arXiv: 0808.1277 [nucl-th]

  390. J. Rotureau, N. Michel, W. Nazarewicz, M. Ploszajczak, J. Dukelsky, Density matrix renormalization group approach for many-body open quantum systems. Phys. Rev. Lett. 97, 110603 (2006). https://doi.org/10.1103/PhysRevLett.97.110603arXiv: nucl-th/0603021

  391. J. Rotureau, N. Michel, W. Nazarewicz, M. Ploszajczak, J. Dukelsky, Density matrix renormalization group approach to two-fluid open many-fermion systems. Phys. Rev. C 79, 014304 (2009). https://doi.org/10.1103/PhysRevC.79.014304arXiv: 0810.0784 [nucl-th]

  392. K. Fossez and J. Rotureau. Density matrix renormalization group description of the island of inversion isotopes 28-33F (2021). arXiv: 2105.05287 [nucl-th]

  393. B. Zhu, R. Wirth, H. Hergert, Singular value decomposition and similarity renormalization group evolution of nuclear interactions. Phys. Rev. C 104(4), 044002 (2021). https://doi.org/10.1103/PhysRevC.104.044002arXiv: 2106.01302 [nucl-th]

  394. A. Tichai, P. Arthuis, K. Hebeler, M. Heinz, J. Hoppe, A. Schwenk, Low-rank matrix de-compositions for ab initio nuclear structure. Phys. Lett. B 821, 136623. (2021) ISSN: 0370-2693. https://doi.org/10.1016/j.physletb.2021.136623. https://www.sciencedirect.com/science/article/pii/S0370269321005633

  395. T. Papenbrock, D.J. Dean, Density matrix renormalization group and wavefunction factorization for nuclei. J. Phys. G Nucl. Part. Phys. 31(8), S1377–S1383 (2005). https://doi.org/10.1088/0954-3899/31/8/016

  396. O. C. Gorton, Effcient modeling of nuclei through coupling of proton and neutron wavefunctions (2018)

  397. J. Faba, V. Martin, L. Robledo, Correlation energy and quantum correlations in a solvable model. Phys. Rev. A 104(3), 032428 (2021). https://doi.org/10.1103/PhysRevA.104.032428arXiv: 2106.15993 [quant-ph]

  398. A.T. Kruppa, J. Kovács, P. Salamon, Ö. Legeza, Entanglement and correlation in two-nucleon systems. J. Phys. G 48(2), 025107 (2021). https://doi.org/10.1088/1361-6471/abc2ddarXiv: 2006.07448 [nucl-th]

  399. Ö. Legeza, L. Veis, A. Poves, J. Dukelsky, Advanced density matrix renormalization group method for nuclear structure calculations. Phys. Rev. C 92(5), 051303 (2015). https://doi.org/10.1103/PhysRevC.92.051303arXiv: 1507.00161 [nucl-th]

  400. C. Robin, M.J. Savage, N. Pillet, Entanglement rearrangement in self-consistent nuclear structure calculations, in Phys. Rev. C. (2021), p. 034325. https://doi.org/10.1103/PhysRevC.103.034325arXiv: 2007.09157 [nucl-th]

  401. D. Zgid, M. Nooijen, Obtaining the two-body density matrix in the density matrix renormalization group method. J. Chem. Phys. 128(14), 144115 (2008). https://doi.org/10.1063/1.2883980

  402. Y. Ma, S. Knecht, S. Keller, M. Reiher, Second-order self-consistent-field density-matrix renormalization group. J. Chem. Theory Comput. 13(6), 2533 (2017). https://doi.org/10.1021/acs.jctc.6b01118

  403. R. P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21 (1982). Ed. by L. M. Brown, pp. 467–488. 10.1007/BF02650179

  404. E.F. Dumitrescu, A.J. McCaskey, G. Hagen, G.R. Jansen, T.D. Morris, T. Papenbrock, R.C. Pooser, D.J. Dean, P. Lougovski, Cloud quantum computing of an atomic nucleus. Phys. Rev. Lett. 120(21), 210501 (2018). https://doi.org/10.1103/PhysRevLett.120.210501arXiv: 1801.03897 [quant-ph]

  405. E.T. Holland, K.A. Wendt, K. Kravvaris, X. Wu, W. Erich Ormand, J.L. DuBois, S. Quaglioni, F. Pederiva, Optimal control for the quantum simulation of nuclear dynamics. Phys. Rev. A 101(6), 062307 (2020). https://doi.org/10.1103/PhysRevA.101.062307arXiv: 1908.08222 [quant-ph]

  406. H.-H. Lu et al., Simulations of subatomic many-body physics on a quantum frequency processor. Phys. Rev. A 100(1), 012320 (2019). https://doi.org/10.1103/PhysRevA.100.012320arXiv: 1810.03959 [quant-ph]

  407. I. Stetcu, A. Baroni, J. Carlson, Variational approaches to constructing the many-body nuclear ground state for quantum computing (2021). arXiv: 2110.06098 [nucl-th]

  408. M.J. Cervia, A.B. Balantekin, S.N. Coppersmith, C.W. Johnson, P.J. Love, C. Poole, K. Robbins, M. Saffman, Lipkin model on a quantum computer. Phys. Rev. C 104(2), 024305 (2021). https://doi.org/10.1103/PhysRevC.104.024305arXiv: 2011.04097 [hep-th]

  409. N. Klco, A. Roggero, M. J. Savage, Standard model physics and the digital quantum revolution: thoughts about the interface (2021). arXiv: 2107.04769 [quant-ph]

  410. S.R. Beane, R.C. Farrell, M. Varma, Entanglement minimization in hadronic scattering with pions. Int. J. Mod. Phys. A 36(30), 2150205 (2021). https://doi.org/10.1142/S0217751X21502055arXiv: 2108.00646 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  411. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133

  412. K. Tsukiyama, S.K. Bogner, A. Schwenk, In-medium similarity renormalization group for nuclei. Phys. Rev. Lett. 106, 222502 (2011). https://doi.org/10.1103/PhysRevLett.106.222502arXiv: 1006.3639 [nucl-th]

  413. J. E. Lilienfeld, Method and apparatus for controlling electric currents. US Patent No. 1,745,175 (application filed in the US on October 8, 1926, Serial No. 140,863, and in Canada October 22, 1925)

  414. R. N. Noyce, Semiconductor device and lead structure. Patent No. US2981877A. (filed in the US on July 30, 1959)

  415. G. E. Moore, Cramming more components onto integrated circuits. Electronics 38.8 (1965)

  416. T. Toffoli, Bicontinuous extensions of invertible combinatorial functions. Math. Syst. Theory 14, 13–23 (1981). https://doi.org/10.1007/BF01752388

  417. C.H. Bennett, The thermodynamics of computation-a review. Int. J. Theor. Phys. 21(12), 905–940 (1982). https://doi.org/10.1007/BF02084158

  418. P. Benioff, The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22(5), 563–591 (1980). https://doi.org/10.1007/BF01011339

  419. G. Popkin, Quest for qubits. Science 354(6316), 1090–1093 (2016). https://doi.org/10.1126/science.354.6316.1090

    Article  ADS  MathSciNet  MATH  Google Scholar 

  420. L. Gyongyosi, S. Imre, A survey on quantum computing technology. Comput. Sci. Rev. 31, 51–71 (2019). https://doi.org/10.1016/j.cosrev.2018.11.002

  421. M. Motta, J.E. Rice, Emerging quantum computing algorithms for quantum chemistry. WIREs Comput. Mol. Sci. (2021)

  422. D. J. Dean, The race to harness quantum is one the US must win. https://thequantuminsider.com/2020/12/18/the-race-to-harness-quantum-is-one-the-us-must-win/ (2020)

  423. J. Carter et al., ASCR report on quantum computing testbed for science. https://science.osti.gov/-/media/ascr/pdf/programdocuments/docs/2017/QTSWReport.pdf (2017)

  424. J. E. Moore et al., Opportunities for quantum computing in chemical and materials sciences. https://science.osti.gov/-/media/bes/pdf/reports/2018/Quantum_computing. pdf (2017)

  425. D. Awschalom et al., Opportunities for basic research for next-generation quantum systems. https://science.osti.gov/-/media/bes/pdf/reports/2018/Quantum_systems.pdf (2017)

  426. D. Beck et al., Nuclear physics and quantum information science. https://science.osti.gov/-/media/np/pdf/Reports/NSAC_QIS_Report.pdf (2019)

  427. P.F.S. Rosa, A. Weiland, S.S. Fender, B.L. Scott, F. Ronning, J.D. Thompson, E.D. Bauer, S.M. Thomas, Single-component superconducting state in UTe2 at 2 K. 2021. arXiv: 2110.06200 [cond-mat.supr-con]

  428. V. Lahtinen, J.K. Pachos, A short introduction to topological quantum computation. SciPost Phys. 3 (3 2017), p. 021. https://doi.org/10.21468/SciPostPhys.3.3.021. https://scipost.org/10.21468/SciPostPhys.3.3.021

  429. A.O. Scheie, E.A. Ghioldi, J. Xing, J.A.M. Paddison, N.E. Sherman, M. Dupont, D. Abernathy, D.M. Pajerowski, S.-S. Zhang, L.O. Manuel, A.E. Trumper, C.D. Pemmaraju, A.S. Sefat, D.S. Parker, T.P. Devereaux, J.E. Moore, C.D. Batista, D.A. Tennant, Witnessing quantum criticality and entanglement in the triangular antiferromagnet KYbSe2 (2021). arXiv: 2109.11527 [cond-mat.str-el]

  430. S. Wang, P. Czarnik, A. Arrasmith, M. Cerezo, L. Cincio, P.J. Coles, Can error mitigation improve trainability of noisy variational quantum algorithms? (2021). arXiv: 2109.01051 [quant-ph]

  431. T. Volkoff, Z. Holmes, A. Sornborger, Universal compiling and (No-)free-lunch theorems for continuous-variable quantum learning. PRX Quantum 2(4), 040327 (2021). https://doi.org/10.1103/PRXQuantum.2.040327

  432. A. Senichev, Z.O. Martin, S. Peana, D. Sychev, X. Xu, A.S. Lagutchev, A. Boltasseva, V.M. Shalaev, Room-temperature single-photon emitters in silicon nitride. Sci. Adv. 7(50), eabj0627 (2021). https://doi.org/10.1126/sciadv.abj0627

  433. N. Klco, E.F. Dumitrescu, A.J. McCaskey, T.D. Morris, R.C. Pooser, M. Sanz, E. Solano, P. Lougovski, M.J. Savage, Quantum-classical computation of Schwinger model dynamics using quantum computers. Phys. Rev. A 98(3), 032331 (2018). https://doi.org/10.1103/PhysRevA.98.032331arXiv: 1803.03326 [quant-ph]

  434. B. Hall, A. Roggero, A. Baroni, J. Carlson, Simulation of collective neutrino oscillations on a quantum computer. Phys. Rev. D 104(6), 063009 (2021). https://doi.org/10.1103/PhysRevD.104.063009arXiv: 2102.12556 [quant-ph]

  435. F. Arute et al., Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019). https://doi.org/10.1038/s41586-019-1666-5arXiv: 1910.11333 [quant-ph]

    Article  ADS  Google Scholar 

  436. Y. Liu et al., Closing the ”quantum supremacy” gap: achieving real-time simulation of a random quantum circuit using a new sunway supercomputer, in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. SC ’21. St. Louis, Missouri: Association for Computing Machinery (2021). ISBN: 9781450384421. https://doi.org/10.1145/3458817.3487399. arXiv: 2110.14502 [quant-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Tews.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tews, I., Davoudi, Z., Ekström, A. et al. Nuclear Forces for Precision Nuclear Physics: A Collection of Perspectives. Few-Body Syst 63, 67 (2022). https://doi.org/10.1007/s00601-022-01749-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-022-01749-x

Navigation