Skip to main content
Log in

Accurate Calculations of Radial Expectations Values \(\varvec{\langle {r^{ - 2}}\rangle }\) for Confined Hydrogen-Like Atoms and Isotropic Harmonic Oscillator

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

By attaining an accuracy of 30 significant figures, in the present work we have calculated the expectation values of \(\langle {r^{ - 2}}\rangle \) of a few states for the confined hydrogen atom and the confined harmonic oscillator, as a function of the confinement radius \(R_{c}\). In comparison to other calculations reported in the literature, our results are found to be more accurate. This numerical precision was achieved by using the exact wave function of each system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Michels, J. De Boer, A. Bijl, Remarks concerning molecular interaction. Physica 4, 981 (1937)

    Article  ADS  Google Scholar 

  2. A. Sommerfeld, H. Welker, Künstliche Grenzbedingungen beim Keplerproblem. Ann. Phys. 32, 56 (1938)

    Article  Google Scholar 

  3. E. Ley-Koo, S. Rubinstein, The hydrogen atom within spherical boxes with penetrable walls. J. Chem. Phys. 71, 351 (1979)

    Article  ADS  Google Scholar 

  4. H.E. Montgomery Jr., K.D. Sen, Dipole polarizabilities for a hydrogen atom confined in a penetrable sphere. Phys. Lett. A 376, 1992 (2012)

    Article  ADS  Google Scholar 

  5. N. Aquino, The hydrogen and helium atoms confined in spherical boxes. Adv. Quantum Chem. 57, 123 (2009)

    Article  ADS  Google Scholar 

  6. X. Tian, C. Zhuang-Qi, O. Yang-Chen, S. Qi-Shun, Z. Gou-Long, Critical radius and dipole polarizability for a confined system. Chin. Phys. 15, 1172 (2006)

    Article  Google Scholar 

  7. M. Neek-Amal, G. Tayebirad, M. Molayem, M.E. Foulaadvand, L. Esmaeili-Sereshki, A. Namiranian, Ground state study of simple atoms within a nanoscale box. Solid State Commun. 145, 594 (2008)

    Article  ADS  Google Scholar 

  8. R. Cabrera-Trujillo, S.A. Cruz, Confinement approach to pressure effects on the dipole and the generalized oscillator strength of atomic hydrogen. Phys. Rev. A 87, 012502 (2013)

    Article  ADS  Google Scholar 

  9. N. Aquino, R.A. Rojas, The confined hydrogen atom: a linear variational approach. Eur. J. Phys. 37, 015401 (2016)

    Article  Google Scholar 

  10. A. Al-Hamel, Energy spectra of tightly confined systems. Appl. Phys. Res. 7, 80 (2015)

    Google Scholar 

  11. N. Aquino, G. Campoy, H.E. Montgomery Jr., Highly accurate solutions for the confined hydrogen atom. Int. J. Quantum Chem. 107, 1548 (2007)

    Article  ADS  Google Scholar 

  12. W.S. Nascimento, F.V. Prudente, Shannon entropy: a study of confined hydrogen-like atoms. Chem. Phys. Lett. 691, 401 (2018)

    Article  ADS  Google Scholar 

  13. F.M. Fernández, E.A. Castro, Hypervirial theorems for systems subjected to sectionally defined potentials. Kinam 4, 193–223 (1982)

    Google Scholar 

  14. P.O. Fröman, S. Yngve, N.J. Fröman, The energy levels and the corresponding normalized wave functions for a model of a compressed atom. J. Math. Phys. 28, 1813 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  15. S.J. Yngve, The energy levels and the corresponding normalized wave functions for a model of a compressed atom. II. J. Math. Phys. 29, 931 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  16. W. Jaskólski, Confined many-electron systems. Phys. Rep. 271, 1 (1996)

    Article  ADS  Google Scholar 

  17. A.L. Buchachenko, Compressed atoms. J. Phys. Chem. 105, 5839 (2001)

    Article  Google Scholar 

  18. J.P. Connerade, V.H. Dolmatov, P.A. Lakshmi, The filling of shells in compressed atoms. J. Phys. B At. Mol. Opt. Phys. 33, 251 (2000)

    Article  ADS  Google Scholar 

  19. J.R. Sabin, E. Brändas, S.A. Cruz (eds.), Advances in Quantum Chemistry, vols. 57, 58 (Academic Press, Amsterdam, 2009)

  20. K.D. Sen (ed.), Electronic Structure of Quantum Confined Atoms and Molecules (Springer, New York, 2014)

    MATH  Google Scholar 

  21. E. Ley-Koo, Recent progress in confined atoms and molecules: superintegrability and symmetry breakings. Rev. Mex. Phys. 64, 326 (2018)

    MathSciNet  Google Scholar 

  22. H.E. Montgomery, G. Campoy, N. Aquino, The confined N-dimensional harmonic oscillator revisited. Phys. Scr. 81, 045010 (2010)

    Article  ADS  Google Scholar 

  23. N. Aquino, The isotropic bounded oscillators. J. Phys. A Math. Gen. 30, 2403 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  24. R. Vargas, J. Garza, E. Vela, Strongly convergent method to solve one-dimensional quantum problems. Phys. Rev. E 53, 1954 (1996)

    Article  ADS  Google Scholar 

  25. K.D. Sen, A.K. Roy, Studies on the 3d confined potentials using generalized pseudospectral approach. Phys. Lett. A 357, 112 (2006)

    Article  ADS  Google Scholar 

  26. A.K. Roy, Confinement in 3d polynomial oscillators through a generalized pseudopotential method. Mod. Phys. Lett. A 29, 1450104 (2014)

    Article  ADS  Google Scholar 

  27. H. Taseli, A. Zafer, Bessel basis with applications: N-dimensional isotropic polynomial oscillators. Int. J. Quantum Chem. 63, 935 (1997)

    Article  Google Scholar 

  28. R.M. Yu, L.R. Zan, L.G. Jiao, Y.K. Ho, Benchmark calculation of the radial expectation value \(\langle {r^{ - 2}}\rangle \) for confined hydrogen-like atoms and isotropic harmonic oscillators. Few-Body Syst. 58, 152 (2017)

    Article  ADS  Google Scholar 

  29. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series, vol. 55 (National Bureau of Standards, Washington, 1972)

    MATH  Google Scholar 

  30. F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R. Miller and B.V. Saunders (eds.) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.16 of 2017-09-18. Section 13

  31. L. Bányai, S.W. Koch, Semiconductor Quantum Dots (World Scientific, Singapore, 1993)

    Book  Google Scholar 

Download references

Acknowledgements

The authors wish to thank A. Flores-Riveros and an anonymous referee for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Aquino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aquino, N., Rojas, R.A. Accurate Calculations of Radial Expectations Values \(\varvec{\langle {r^{ - 2}}\rangle }\) for Confined Hydrogen-Like Atoms and Isotropic Harmonic Oscillator. Few-Body Syst 61, 16 (2020). https://doi.org/10.1007/s00601-020-01549-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-020-01549-1

Navigation