Skip to main content
Log in

Baryons and the Borromeo

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The kernels in the tangible matter of our everyday experience are composed of light quarks. At least, they are light classically; but they don’t remain light. Dynamical effects within the Standard Model of Particle Physics change them in remarkable ways, so that in some configurations they appear nearly massless, but in others possess masses on the scale of light nuclei. Modern experiment and theory are exposing the mechanisms responsible for these remarkable transformations. The rewards are great if we can combine the emerging sketches into an accurate picture of confinement, which is such a singular feature of the Standard Model; and looming larger amongst the emerging ideas is a perspective that leads to a Borromean picture of the proton and its excited states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collins, J.C., Duncan, A., Joglekar, S.D.: Trace and dilatation anomalies in gauge theories. Phys. Rev. D 16, 438–449 (1977)

    Article  ADS  Google Scholar 

  2. Nielsen, N.: The energy momentum tensor in a non-Abelian quark gluon theory. Nucl. Phys. B 120, 212–220 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  3. Pascual, P., Tarrach, R.: QCD: Renormalization for the Practitioner. Springer-Verlag, Berlin, Lecture Notes in Physics 194 (1984)

  4. Jaffe, A.M.: The millennium grand challenge in mathematics. Not. Am. Math. Soc. 53, 652–660 (2006)

    MathSciNet  MATH  Google Scholar 

  5. McNeile, C.: Lattice status of gluonia/glueballs. Nucl. Phys. Proc. Suppl. 186, 264–267 (2009)

    Article  ADS  Google Scholar 

  6. Cloët, I.C., Roberts, C.D.: Explanation and prediction of observables using continuum strong QCD. Prog. Part. Nucl. Phys. 77, 1–69 (2014)

    Article  ADS  Google Scholar 

  7. Wilson, K.G.: Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974)

    Article  ADS  Google Scholar 

  8. Bali, G.S., et al.: Observation of string breaking in QCD. Phys. Rev. D 71, 114513 (2005)

    Article  ADS  Google Scholar 

  9. Prkacin, Z., et al.: Anatomy of string breaking in QCD. PoS LAT2005, 308 (2006)

    Google Scholar 

  10. Chang, L., Cloët, I.C., El-Bennich, B., Klähn, T., Roberts, C.D.: Exploring the light-quark interaction. Chin. Phys. C 33, 1189–1196 (2009)

    Article  ADS  Google Scholar 

  11. Glimm, J., Jaffee, A.: Quantum Physics. A Functional Point of View. Springer-Verlag, New York (1981)

    MATH  Google Scholar 

  12. Stingl, M.: Propagation properties and condensate formation of the confined Yang-Mills field. Phys. Rev. D 34, 3863–3881 (1986). [Erratum: Phys. Rev.D36,651(1987)]

    Article  ADS  Google Scholar 

  13. Roberts, C.D., Williams, A.G., Krein, G.: On the implications of confinement. Int. J. Mod. Phys. A 7, 5607–5624 (1992)

    Article  ADS  Google Scholar 

  14. Hawes, F.T., Roberts, C.D., Williams, A.G.: Dynamical chiral symmetry breaking and confinement with an infrared vanishing gluon propagator. Phys. Rev. D 49, 4683–4693 (1994)

    Article  ADS  Google Scholar 

  15. Roberts, C.D., Williams, A.G.: Dyson-Schwinger equations and their application to hadronic physics. Prog. Part. Nucl. Phys. 33, 477–575 (1994)

    Article  ADS  Google Scholar 

  16. Krein, G., Nielsen, M., Puff, R.D., Wilets, L.: Ghost poles in the nucleon propagator: vertex corrections and form-factors. Phys. Rev. C 47, 2485–2491 (1993)

    Article  ADS  Google Scholar 

  17. Bracco, M.E., Eiras, A., Krein, G., Wilets, L.: Selfconsistent solution of the Schwinger–Dyson equations for the nucleon and meson propagators. Phys. Rev. C 49, 1299–1308 (1994)

    Article  ADS  Google Scholar 

  18. Bhagwat, M., Pichowsky, M., Roberts, C., Tandy, P.: Analysis of a quenched lattice QCD dressed quark propagator. Phys. Rev. C 68, 015203 (2003)

    Article  ADS  Google Scholar 

  19. Bowman, P.O., et al.: Unquenched quark propagator in Landau gauge. Phys. Rev. D 71, 054507 (2005)

    Article  ADS  Google Scholar 

  20. Bhagwat, M.S., Tandy, P.C.: Analysis of full-QCD and quenched-QCD lattice propagators. AIP Conf. Proc. 842, 225–227 (2006)

    Article  ADS  Google Scholar 

  21. Aguilar, A., Binosi, D., Papavassiliou, J.: Gluon and ghost propagators in the Landau gauge: deriving lattice results from Schwinger–Dyson equations. Phys. Rev. D 78, 025010 (2008)

    Article  ADS  Google Scholar 

  22. Aguilar, A., Binosi, D., Papavassiliou, J., Rodríguez-Quintero, J.: Non-perturbative comparison of QCD effective charges. Phys. Rev. D 80, 085018 (2009)

    Article  ADS  Google Scholar 

  23. Boucaud, P., et al.: The infrared behaviour of the pure Yang-Mills green functions. Few Body Syst. 53, 387–436 (2012)

    Article  ADS  Google Scholar 

  24. Pennington, M.R., Wilson, D.J.: Are the dressed gluon and ghost propagators in the Landau Gauge presently determined in the confinement regime of QCD? Phys. Rev. D 84, 119901 (2011)

    Article  ADS  Google Scholar 

  25. Ayala, A., Bashir, A., Binosi, D., Cristoforetti, M., Rodriguez-Quintero, J.: Quark flavour effects on gluon and ghost propagators. Phys. Rev. D 86, 074512 (2012)

    Article  ADS  Google Scholar 

  26. Binosi, D., Chang, L., Papavassiliou, J., Roberts, C.D.: Bridging a gap between continuum-QCD and ab initio predictions of hadron observables. Phys. Lett. B 742, 183–188 (2015)

    Article  ADS  Google Scholar 

  27. Stingl, M.: A systematic extended iterative solution for quantum chromodynamics. Z. Phys. A 353, 423–445 (1996)

    Article  ADS  Google Scholar 

  28. Accardi, A., Arleo, F., Brooks, W.K., D’Enterria, D., Muccifora, V.: Parton propagation and fragmentation in QCD matter. Riv. Nuovo Cim. 32, 439–553 (2010)

    ADS  Google Scholar 

  29. Dudek, J., et al.: Physics opportunities with the 12 GeV upgrade at Jefferson lab. Eur. Phys. J. A 48, 187 (2012)

    Article  ADS  Google Scholar 

  30. Accardi, A. et al. Electron ion collider: the next QCD frontier – understanding the glue that binds us all. arXiv:1212.1701 [nucl-ex]

  31. Brodsky, S.J., Shrock, R.: Condensates in quantum chromodynamics and the cosmological constant. Proc. Nat. Acad. Sci. 108, 45–50 (2011)

    Article  ADS  Google Scholar 

  32. Brodsky, S.J., Roberts, C.D., Shrock, R., Tandy, P.C.: New perspectives on the quark condensate. Phys. Rev. C 82, 022201(R) (2010)

    Article  ADS  Google Scholar 

  33. Chang, L., Roberts, C.D., Tandy, P.C.: Expanding the concept of in-hadron condensates. Phys. Rev. C 85, 012201(R) (2012)

    Article  ADS  Google Scholar 

  34. Brodsky, S.J., Roberts, C.D., Shrock, R., Tandy, P.C.: Confinement contains condensates. Phys. Rev. C 85, 065202 (2012)

    Article  ADS  Google Scholar 

  35. Maris, P., Roberts, C.D., Tandy, P.C.: Pion mass and decay constant. Phys. Lett. B 420, 267–273 (1998)

    Article  ADS  Google Scholar 

  36. Qin, S.-X., Roberts, C.D., Schmidt, S.M.: Ward-Green-Takahashi identities and the axial-vector vertex. Phys. Lett. B 733, 202–208 (2014)

    Article  ADS  Google Scholar 

  37. Höll, A., Krassnigg, A., Roberts, C.D.: Pseudoscalar meson radial excitations. Phys. Rev. C 70, 042203(R) (2004)

    Article  ADS  Google Scholar 

  38. Ballon-Bayona, A., Krein, G., Miller, C.: Decay constants of the pion and its excitations in holographic QCD. Phys. Rev. D 91, 065024 (2015)

    Article  ADS  Google Scholar 

  39. Chang, L., Roberts, C.D.: Sketching the Bethe-Salpeter kernel. Phys. Rev. Lett. 103, 081601 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Chang, L., Liu, Y.-X., Roberts, C.D.: Dressed-quark anomalous magnetic moments. Phys. Rev. Lett. 106, 072001 (2011)

    Article  ADS  Google Scholar 

  41. Chang, L., Roberts, C.D.: Tracing masses of ground-state light-quark mesons. Phys. Rev. C 85, 052201(R) (2012)

    Article  ADS  Google Scholar 

  42. Binosi, D., Chang, L., Papavassiliou, J., Qin, S.-X., Roberts, C.D.: Symmetry preserving truncations of the gap and Bethe–Salpeter equations. Phys. Rev. D 93, 096010 (2016)

    Article  ADS  Google Scholar 

  43. Binosi, D.: From continuum QCD to hadron observables. EPJ Web Conf. 113, 05002 (2016)

    Article  Google Scholar 

  44. Chang, L., Roberts, C.D., Tandy, P.C.: Selected highlights from the study of mesons. Chin. J. Phys. 49, 955–1004 (2011)

    Google Scholar 

  45. Horn, T., Roberts, C.D.: The pion: an enigma within the standard model. J. Phys. G 43, 073001/1–46 (2016)

  46. Eichmann, G., Alkofer, R., Cloët, I.C., Krassnigg, A., Roberts, C.D.: Perspective on rainbow-ladder truncation. Phys. Rev. C 77, 042202(R) (2008)

    Article  ADS  Google Scholar 

  47. Eichmann, G., Cloët, I.C., Alkofer, R., Krassnigg, A., Roberts, C.D.: Toward unifying the description of meson and baryon properties. Phys. Rev. C 79, 012202(R) (2009)

    Article  ADS  Google Scholar 

  48. Eichmann, G.: Baryon form factors from Dyson-Schwinger equations. PoS QCD–TNT–II, 017 (2011)

    Google Scholar 

  49. Chang, L., Roberts, C.D., Schmidt, S.M.: Dressed-quarks and the nucleon’s axial charge. Phys. Rev. C 87, 015203 (2013)

    Article  ADS  Google Scholar 

  50. Segovia, J., Cloët, I.C., Roberts, C.D., Schmidt, S.M.: Nucleon and \(\varDelta \) elastic and transition form factors. Few Body Syst. 55, 1185–1222 (2014)

    Article  ADS  Google Scholar 

  51. Roberts, C.D.: Hadron physics and QCD: just the basic facts. J. Phys. Conf. Ser. 630, 012051 (2015)

    Article  ADS  Google Scholar 

  52. Segovia, J., et al.: Completing the picture of the Roper resonance. Phys. Rev. Lett. 115, 171801 (2015)

    Article  ADS  Google Scholar 

  53. Segovia, J.: \(\bf \gamma _{v} NN^{\ast }\) Electrocouplings in Dyson-Schwinger Equations, (2016), arXiv:1602.02768 [nucl-th]

  54. Eichmann, G.: Progress in the calculation of nucleon transition form factors, (2016), arXiv:1602.03462 [hep-ph]

  55. El-Bennich, B., Krein, G., Rojas, E., and Serna, F.E.: Excited hadrons and the analytical structure of bound-state interaction kernels, (2016) arXiv:1602.06761 [nucl-th]

  56. Segovia, J., Roberts, C.D., Schmidt, S.M.: Understanding the nucleon as a Borromean bound-state. Phys. Lett. B 750, 100–106 (2015)

    Article  ADS  Google Scholar 

  57. Bissey, F., et al.: Gluon flux-tube distribution and linear confinement in baryons. Phys. Rev. D 76, 114512 (2007)

    Article  ADS  Google Scholar 

  58. Bissey, F., Signal, A., Leinweber, D.: Comparison of gluon flux-tube distributions for quark-diquark and quark-antiquark hadrons. Phys. Rev. D 80, 114506 (2009)

    Article  ADS  Google Scholar 

  59. Alexandrou, C., de Forcrand, Ph, Lucini, B.: Evidence for diquarks in lattice QCD. Phys. Rev. Lett. 97, 222002 (2006)

    Article  ADS  Google Scholar 

  60. Babich, R., et al.: Diquark correlations in baryons on the lattice with overlap quarks. Phys. Rev. D 76, 074021 (2007)

    Article  ADS  Google Scholar 

  61. Cahill, R.T., Roberts, C.D., Praschifka, J.: Calculation of diquark masses in QCD. Phys. Rev. D 36, 2804 (1987)

    Article  ADS  Google Scholar 

  62. Maris, P.: Effective masses of diquarks. Few Body Syst. 32, 41–52 (2002)

    Article  ADS  Google Scholar 

  63. Maris, P.: Electromagnetic properties of diquarks. Few Body Syst. 35, 117–127 (2004)

    ADS  Google Scholar 

  64. Roberts, H.L.L., et al.: \(\pi \)- and \(\rho \)-mesons, and their diquark partners, from a contact interaction. Phys. Rev. C 83, 065206 (2011)

    Article  ADS  Google Scholar 

  65. Cahill, R.T., Roberts, C.D., Praschifka, J.: Baryon structure and QCD. Austral. J. Phys. 42, 129–145 (1989)

    Article  ADS  Google Scholar 

  66. Lichtenberg, D.B., Tassie, L.J.: Baryon mass splitting in a Boson–Fermion model. Phys. Rev. 155, 1601–1606 (1967)

    Article  ADS  Google Scholar 

  67. Ripani, M., et al.: Measurement of \(e p \rightarrow e^\prime p \pi ^+ \pi ^-\) and baryon resonance analysis. Phys. Rev. Lett. 91, 022002 (2003)

    Article  ADS  Google Scholar 

  68. Burkert, V.D.: Evidence of new nucleon resonances from electromagnetic meson production. EPJ Web Conf. 37, 01017 (2012)

    Article  Google Scholar 

  69. Kamano, H., Nakamura, S.X., Lee, T.S.H., Sato, T.: Nucleon resonances within a dynamical coupled-channels model of \(\pi N\) and \(\gamma N\) reactions. Phys. Rev. C 88, 035209 (2013)

    Article  ADS  Google Scholar 

  70. Roberts, C.D.: Three lectures on hadron physics. J. Phys. Conf. Ser. 706, 022003 (2016)

    Article  ADS  Google Scholar 

  71. Chen, C., et al.: Spectrum of hadrons with strangeness. Few Body Syst. 53, 293–326 (2012)

    Article  ADS  Google Scholar 

  72. Edwards, R.G., Dudek, J.J., Richards, D.G., Wallace, S.J.: Excited state baryon spectroscopy from lattice QCD. Phys. Rev. D 84, 074508 (2011)

    Article  ADS  Google Scholar 

  73. Dugger, M., et al.: \(\pi ^+\) photoproduction on the proton for photon energies from 0.725 to 2.875 GeV. Phys. Rev. C 79, 065206 (2009)

    Article  ADS  Google Scholar 

  74. Aznauryan, I., et al.: Electroexcitation of nucleon resonances from CLAS data on single pion electroproduction. Phys. Rev. C 80, 055203 (2009)

    Article  ADS  Google Scholar 

  75. Aznauryan, I., Burkert, V.: Electroexcitation of nucleon resonances. Prog. Part. Nucl. Phys. 67, 1–54 (2012)

    Article  ADS  Google Scholar 

  76. Mokeev, V.I., et al.: Experimental study of the \(P_{11}(1440)\) and \(D_{13}(1520)\) resonances from CLAS data on \(ep \rightarrow e^{\prime }\pi ^{+} \pi ^{-} p^{\prime }\). Phys. Rev. C 86, 035203 (2012)

    Article  ADS  Google Scholar 

  77. Mokeev, V.I., et al.: New results from the studies of the \(N(1440)1/2^+\), \(N(1520)3/2^-\), and \(\varDelta (1620)1/2^-\) resonances in exclusive \(ep \rightarrow e^{\prime }p^{\prime } \pi ^+ \pi ^-\) electroproduction with the CLAS detector. Phys. Rev. C 93, 025206 (2016)

    Article  ADS  Google Scholar 

  78. Burkert, V.D.: Nucleon Resonance Physics, arXiv:1603.00919 [nucl-ex]

  79. Cloët, I.C., Roberts, C.D.: Form Factors and Dyson-Schwinger Equations. PoS, LC2008, 047 (2008)

  80. Bijker, R., Santopinto, E.: Unquenched quark model for baryons: magnetic moments, spins and orbital angular momenta. Phys. Rev. C 80, 065210 (2009)

    Article  ADS  Google Scholar 

  81. Cloët, I.C., Bentz, W., Thomas, A.W.: Role of diquark correlations and the pion cloud in nucleon elastic form factors. Phys. Rev. C 90, 045202 (2014)

    Article  ADS  Google Scholar 

  82. Wilson, D.J., Cloët, I.C., Chang, L., Roberts, C.D.: Nucleon and Roper electromagnetic elastic and transition form factors. Phys. Rev. C 85, 025205 (2012)

    Article  ADS  Google Scholar 

  83. Olive, K.A., et al.: Review of particle physics. Chin. Phys. C 38, 090001 (2014)

    Article  ADS  Google Scholar 

  84. Chang, L., et al.: Imaging dynamical chiral symmetry breaking: pion wave function on the light front. Phys. Rev. Lett. 110, 132001 (2013)

    Article  ADS  Google Scholar 

  85. Gothe, R.W. et al.: Nucleon Resonance Studies with CLAS12. JLab 12 Experiment: E12-09-003. (2009)

  86. Carman, D.S. et al.: Exclusive \(N^* \rightarrow KY\) Studies with CLAS12. JLab 12 Experiment: E12-06-108A. (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig D. Roberts.

Additional information

This article belongs to the special issue “Nucleon Resonances”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roberts, C.D., Segovia, J. Baryons and the Borromeo. Few-Body Syst 57, 1067–1076 (2016). https://doi.org/10.1007/s00601-016-1150-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-016-1150-9

Navigation