Skip to main content
Log in

A systematic extended iterative solution for quantum chromodynamics

  • Published:
Zeitschrift für Physik A Hadrons and Nuclei

Abstract

An outline is given of an extended perturbative solution of Euclidean QCD which systematically accounts for a class of nonperturbative effects, while still allowing renormalization by the perturbative counterterms. Euclidean proper verticesΓ are approximated by a double sequenceΓ [r,p], wherer denotes the degree of rational approximation with respect to the spontaneous mass scaleΛ QCD, nonanalytic in the couplingg 2, whilep represents the order of perturbative corrections ing 2 calculated fromΓ [r,0]-rather than from the perturbative Feynman rulesΓ (0)pert-as a starting point. The mechanism allowing the nonperturbative terms to reproduce themselves in the Dyson-Schwinger equations preserves perturbative renormalizability and is intimately tied to the divergence structure of the theory. As a result, it restricts the self-consistency problem for theΓ [r,0] rigorously — i.e. without decoupling approximations — to the seven superficially divergent vertices. An interesting aspect of the solution is that rational-function sequences for the QCD propagators contain subsequences describing short-lived elementary excitations. The method is calculational, in that it allows the known techniques of loop computation to be used while dealing with integrands of truly nonperturative content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Le Guillou and J. Zinn-Justin (eds.), Large-Order Behaviour of Perturbation Theory, North-Holland, Amsterdam, 1990

    Google Scholar 

  2. G. t'Hooft, in: A. Zichichi (Ed.), The Whys of Subnuclear Physics (Proceedings Erice 1977), Plenum, New York, 1979

    Google Scholar 

  3. D.J. Gross and A. Neveu, Phys. Rev.D10 (1974) 3235; C.G. Callan, R.F. Dashen, and D.J. Gross, Phys. Rev.D17 (1978) 2717.

    Google Scholar 

  4. N.K. Nielsen, Nucl. Phys.B120 (1977) 212; J.C. Collins, A. Duncan, and S.D. Joglekar, Phys. Rev.D16 (1977) 438

    Google Scholar 

  5. G. Münster, Z. PhysikC12 (1982) 43

    Google Scholar 

  6. A short account of some of the ideas in this paper has appeared in: K. Goeke, H.Y. Pauchy Hwang and J. Speth (Editors), Medium Energy Physics (Proceedings German-Chinese Symposium, Bochum 1992), Plenum, New York, 1994.

    Google Scholar 

  7. U. Häbel, R. Könning, H.-G. Reusch, M. Stingl and S. Wigard, Z. PhysikA336 (1990) 423 and 435

    Google Scholar 

  8. F.J. Dyson, Phys. Rev.75 (1949) 1736; J. Schwinger, Proc. Nat. Acad. Sci.37 (1951) 452 and 455

    Google Scholar 

  9. E.J. Eichten and F.L. Feinberg, Phys. Rev.D10 (1974) 3254

    Google Scholar 

  10. E.g. T. Muta, Foundations of Quantum Chromodynamics, World Scientific, Singapore, 1987

    Google Scholar 

  11. E.g. P. Pascual and R. Tarrach, QCD: Renormalization for the Practitioner (Lecture Notes in Physics Vol. 194), Springer, Berlin, 1984

    Google Scholar 

  12. D. Zwanziger, Nucl. Phys.B323 (1989) 513

    Google Scholar 

  13. D. Zwanziger, Nucl. Phys.B378 (1992) 525, ibid.B399 (1993) 477

    Google Scholar 

  14. V.N. Gribov, Nucl. Phys.B139 (1978) 1

    Google Scholar 

  15. N. Maggiore and M. Schaden, Landau Gauge within the Gribov Horizon, preprint NYU-TH-93/10/05, October 1993

  16. E.g.C.-R. Ji, A.F. Sill, and R.M. Lombard-Nelson, Phys. Rev.D36 (1987) 165

    Google Scholar 

  17. M. Lüscher, R. Sommer, P. Weisz and U. Wolff, Nucl. Phys.B389 (1993) 247; ibid.B413 (1994) 481

    Google Scholar 

  18. V.N. Gribov, Physica ScriptaT15 (1987) 164

    Google Scholar 

  19. H. Lehmann, Nuovo Cim.11 (1954) 342, G. Källen, Helv. Phys. Acta25 (1952) 417

    Google Scholar 

  20. E.g. G.A. Baker, Jr., Essentials of Padé Approximants, Academic Press, New York/London, 1975

    Google Scholar 

  21. J. Schwinger, Phys. Rev.125 (1962) 397

    Google Scholar 

  22. M. Stingl, Phys. Rev.D34 (1986) 3863; Erratum, ibid.D36 (1987) 651

    Google Scholar 

  23. G. Barton, Introduction to Advanced Field Theory, Interscience, New York, 1963

    Google Scholar 

  24. M. Lavelle and M. Schaden, Phys. Lett.B208 (1988) 297

    Google Scholar 

  25. M. Lavelle and M. Oleszczuk, Z. PhysikC51 (1991) 615

    Google Scholar 

  26. J. Ahlbach, M. Lavelle, M. Schaden and A. Streibl, Phys. Lett.B275 (1992) 124

    Google Scholar 

  27. M. Lavelle and M. Oleszczuk, Mod. Phys. Lett.A7 (1992) 3617 (Brief Reviews)

    Google Scholar 

  28. J.S. Ball and T.-W. Chiu, Phys. Rev.D22 (1980) 2550

    Google Scholar 

  29. G. t'Hooft, Nucl. Phys.B61 (1973) 455

    Google Scholar 

  30. E.g. G. Roepstorff, Path-Integral Approach to Quantum Physics, Springer, New York, 1994, ch. 7.2

    Google Scholar 

  31. H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo Cim.1 (1955) 1425

    Google Scholar 

  32. J.S. Ball and T.-W. Chiu, Phys. Rev.D22 (1980) 2542

    Google Scholar 

  33. W. Zimmermann, Ann. Phys. (N.Y.)77 (1973) 536

    Google Scholar 

  34. H. Epstein and V. Glaser, Ann. Inst. PoincaréXIX (1973) 211

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Lenz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stingl, M. A systematic extended iterative solution for quantum chromodynamics. Z. Physik A - Hadrons and Nuclei 353, 423–445 (1996). https://doi.org/10.1007/BF01285154

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01285154

PACS

Navigation