Skip to main content
Log in

Matrix Continued Fraction Solution to the Relativistic Spin-0 Feshbach–Villars Equations

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The Feshbach–Villars equations, like the Klein–Gordon equation, are relativistic quantum mechanical equations for spin-0 particles.We write the Feshbach–Villars equations into an integral equation form and solve them by applying the Coulomb–Sturmian potential separable expansion method. We consider boundstate problems in a Coulomb plus short range potential. The corresponding Feshbach–Villars CoulombGreen’s operator is represented by a matrix continued fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klein O.: Quantum theory and five-dimensional relativity theory. Z. Phys. 37(12), 895 (1926)

    Article  ADS  MATH  Google Scholar 

  2. Gordon W.: Der Comptoneffekt nach der Schrödingerschen Theorie. Z. Phys. 40, 117 (1926)

    Article  ADS  MATH  Google Scholar 

  3. Fock V.: Zur Schrödingerschen Wellenmechanik. Z. Phys. 38, 242 (1926)

    Article  ADS  MATH  Google Scholar 

  4. Kudar J.: Zur vierdimensionalen Formulierung der undulatorischen Mechanik. Ann. der Phys. (Leipzig) 81, 632 (1926)

    Article  ADS  MATH  Google Scholar 

  5. de Donder T., van Dunge H.: La quantification déduite de la gravifique einsteinienne. C. R.Acad. Sci. (Paris) 183, 22 (1926)

    MATH  Google Scholar 

  6. Zettili N.: Quantum Mechanics: Concepts and Applications. Wiley, New York (2009)

    Google Scholar 

  7. Shankar R.: Principles of Quantum Mechanics. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  8. Feshbach, H., Villars, F.: Rev. Mod. Phys. 30, 24 (1958). doi:10.1103/RevModPhys.30.24

  9. Corinaldesi E.: Relativistic Wave Mechanics. Courier Dover Publications, Mineola (2015)

    Google Scholar 

  10. Davydov A.: Quantum Mechanics. 2nd edn. Pergamon Press, Oxford (1976)

    Google Scholar 

  11. Baym G.A.: Lectures on Quantum Mechanics. Benjamin, Berlin (1969)

    MATH  Google Scholar 

  12. Greiner W.: Relativistic Quantum Mechanics, vol. 3. Springer, Berlin (1990)

    Book  Google Scholar 

  13. Ni G., Chen S.: Advanced Quantum Mechanics. Rinton Press, Princeton (2002)

    MATH  Google Scholar 

  14. Wachter A.: Relativistic Quantum Mechanics. Springer Science & Business Media, Berlin (2010)

    Google Scholar 

  15. Strange P.: Relativistic Quantum Mechanics: With Applications in Condensed Matter and Atomic Physics. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  16. Wagner R., Ware M., Su Q., Grobe R.: Exponential enhancement of field-induced pair creation from the bosonic vacuum. Phys. Rev. A 81(5), 052104 (2010)

    Article  ADS  Google Scholar 

  17. Haouat S., Chetouani L.: Pair creation in Feshbach-Villars formalism with two components. Eur. Eur. Phys. J. C Part. Fields 41(3), 297 (2005)

    ADS  Google Scholar 

  18. Wagner R., Ware M., Su Q., Grobe R.: Bosonic analog of the Klein paradox. Phys. Rev. A 81(2), 024101 (2010)

    Article  ADS  Google Scholar 

  19. Bounames, A., Chetouani, L.: arXiv preprint arXiv:0712.0150 (2007)

  20. Bounames A., Chetouani L.: Solution of the Feshbach-Villars equation for the step potential. Phys. Lett. A 279(3), 139 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Chetouani L., Merad M., Boudjedaa T., Lecheheb A.: Solution of Duffin-Kemmer- Petiau equation for the step potential. Int. J. Theor. Phys. 43(4), 1147 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Merad M., Chetouani L., Bounames A.: Boundary conditions for one-dimensional Feshbach-Villars equation. Phys. Lett. A 267(4), 225 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Guettou B., Chetouani L.: Pair creation of spin-1/2 particles in Feshbach-Villars formalism. Phys. Scr. 74(1), 12 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Leon M., Seki R.: Relativistic corrections to perturbation theory for pionic and kaonic atoms. Nucl. Phys. A 352(3), 477 (1981)

    Article  ADS  Google Scholar 

  25. Fuda M.G.: Feshbach-Villars formalism and pion-nucleon scattering. Phys. Rev. C 21(4), 1480 (1980)

    Article  ADS  Google Scholar 

  26. Friar J.: Feshbach-Villars perturbation theory for pionic atom problems. Z. Phys. A At. Nucl. 297(2), 147 (1980)

    Article  ADS  Google Scholar 

  27. Wong C.Y.: Klein-Gordon equation in hydrodynamical form. J. Math. Phys. 51(12), 122304 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  28. Kowalenko V., Frankel N.E., Hines K.C.: Response theory of particle-anti-particle plasmas. Phys. Rep. 126(3), 109 (1985)

    Article  ADS  Google Scholar 

  29. Sidharth B.G.: Negative energy solutions and symmetries. Int. J. Mod. Phys. E 20(10), 2177 (2011)

    Article  ADS  Google Scholar 

  30. Rizov V., Sazdjian H., Todorov I.T.: On the relativistic quantum mechanics of two interacting spinless particles. Ann. Phys. 165(1), 59 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  31. Khounfais K., Boudjedaa T., Chetouani L.: Scattering matrix for Feshbach-Villars equation for spin 0 and 1/2: Woods-Saxon potential. Czechoslov. J. Phys. 54(7), 697 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  32. Haghighat M., Dadkhah A.: Coherent state for a relativistic spinless particle. Phys. Lett. A 316(5), 271 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Znojil M.: Solvable relativistic quantum dots with vibrational Spectra. Czechoslov. J. Phys. 55(9), 1187 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  34. Znojil M.: Experiments in PT-symmetric quantum mechanics. Czechoslov. J. Phys. 54(1), 151 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  35. Znojil M., Bíla H., Jakubskỳ V.: Pseudo-Hermitian approach to energy-dependent Klein-Gordon models. Czechoslov. J. Phys. 54(10), 1143 (2004)

    Article  ADS  Google Scholar 

  36. Znojil M.: Relativistic supersymmetric quantum mechanics based on Klein-Gordon equation. J. Phys. A Math. Gen. 37(40), 9557 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Konya, B., Levai, G., Papp, Z.: Green’s matrix from Jacobi matrix Hamiltonian. Math. Phys. 38, 4832 (1997). doi:10.1063/1.532127

  38. Demir, F., Hlousek, Z.T., Papp, Z.: Coulomb-Sturmian matrix elements of the Coulomb Green’s operator. Phys. Rev. A 74, 014701 (2006). doi:10.1103/PhysRevA.74.014701

  39. Brown N., Grefe S., Papp Z.: Approximations of potentials through the truncation of their inverses. Phys. Rev. C 88(4), 047001 (2013)

    Article  ADS  Google Scholar 

  40. Papp, Z.: Three-potential formalism for the three-body coulomb scattering problem. Phys. Rev. C 55, 1080 (1997). doi:10.1103/PhysRevC.55.1080

  41. Papp, Z.,Hu, C.Y.,Hlousek, Z.T.,Kónya, B.,Yakovlev, S.L.: Three-potential formalism for the three-body scattering problem with attractive coulomb interactions. Phys. Rev. A 63(6), 062721 (2001). doi:10.1103/PhysRevA.63.062721

  42. Bender C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70(6), 947 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Papp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, N.C., Papp, Z. & Woodhouse, R. Matrix Continued Fraction Solution to the Relativistic Spin-0 Feshbach–Villars Equations. Few-Body Syst 57, 103–108 (2016). https://doi.org/10.1007/s00601-015-1032-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-015-1032-6

Keywords

Navigation