Skip to main content
Log in

Effective Field Theory of Interactions on the Lattice

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We consider renormalization of effective field theory interactions by discretizing the continuum on a tight-binding lattice. After studying the one-dimensional problem, we address s-wave collisions in three dimensions and relate the bare lattice coupling constants to the continuum coupling constants. Our method constitutes a very simple avenue for the systematic renormalization in effective field theory, and is especially useful as the number of interaction parameters increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braun J.: Fermion interactions and universal behavior in strongly interacting theories. J. Phys. G 39, 033001 (2012)

    Article  ADS  Google Scholar 

  2. Bloch I., Dalibard J., Zwerger W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  3. Chin C., Grimm R., Julienne P., Tiesinga E.: Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  4. Lewenstein M. et al.: Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv. Phys. 56, 243 (2007)

    Article  ADS  Google Scholar 

  5. Esslinger T.: Fermi-hubbard physics with atoms in an optical lattice. Annu. Rev. Condens. Matter. Phys. 1, 129 (2010)

    Article  ADS  Google Scholar 

  6. Baker G.A. Jr.: Neutron matter model. Phys. Rev. C 60, 054311 (1999)

    Article  ADS  Google Scholar 

  7. Schwenk A., Pethick C.J.: Resonant Fermi Gases with a Large Effective Range. Phys. Rev. Lett. 95, 160401 (2005)

    Article  ADS  Google Scholar 

  8. Carlson J., Morales J. Jr, Pandharipande V.R., Ravenhall D.G.: Quantum Monte Carlo calculations of neutron matter. Phys. Rev. C. 68, 025802 (2003)

    Article  ADS  Google Scholar 

  9. Zinner N.T., Jensen A.S.: Comparing and contrasting nuclei and cold atomic gases. J. Phys. G: Nucl. Part. Phys. 40, 053101 (2013)

    Article  ADS  Google Scholar 

  10. Lee D.: Lattice simulations for few- and many-body systems. Prog. Part. Nucl. Phys. 63, 117 (2009)

    Article  ADS  Google Scholar 

  11. Endres M.G., Kaplan D.B., Lee J.-W., Nicholson A.M.: Lattice Monte Carlo calculations for unitary fermions in a finite box. Phys. Rev. A 87, 023615 (2013)

    Article  ADS  Google Scholar 

  12. Weinberg S.: Nuclear forces from chiral lagrangians. Phys. Lett. B. 251, 288 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  13. Weinberg S.: Effective chiral lagrangians for nucleon-pion interactions and nuclear forces. Nucl. Phys. B 363, 3 (1991)

    Article  ADS  Google Scholar 

  14. Phillips D.R., Beane S.R., Cohen T.D.: Regularization and renormalization in effective field theories of the nucleon-nucleon interaction. Nucl. Phys. A. 631, 447 (1998)

    Article  ADS  Google Scholar 

  15. Kaplan D.B., Savage M.J., Wise M.B.: A new expansion for nucleon-nucleon interactions. Phys. Lett. B. 424, 390 (1998)

    Article  ADS  Google Scholar 

  16. Kaplan D.B., Savage M.J., Wise M.B.: Two-nucleon systems from effective field theory. Nucl. Phys. B. 534, 329 (1998)

    Article  ADS  Google Scholar 

  17. Lüscher M.: Volume dependence of the energy spectrum in massive quantum field theories: I. Stable particle states. Commun. Math. Phys. 104, 177 (1986)

    Article  ADS  MATH  Google Scholar 

  18. Lüscher M.: Volume dependence of the energy spectrum in massive quantum field theories: II. Scattering states. Commun. Math. Phys. 105, 153 (1986)

    Article  ADS  Google Scholar 

  19. Lüscher M.: Two-particle states on a torus and their relation to the scattering matrix. Nucl. Phys. B 354, 531 (1991)

    Article  ADS  Google Scholar 

  20. Paredes B. et al.: Tonks-Girardeau gas of ultracold atoms in an optical lattice. Nature (London) 429, 277 (2004)

    Article  ADS  Google Scholar 

  21. Kinoshita T., Wenger T., Weiss D.: Observation of a one-dimensional tonks-girardeau gas. Science 305, 1125 (2004)

    Article  ADS  Google Scholar 

  22. Kinoshita T., Wenger T., Weiss D.: Local pair correlations in one-dimensional bose gases. Phys. Rev. Lett. 95, 190406 (2005)

    Article  ADS  Google Scholar 

  23. Haller E. et al.: Realization of an excited, strongly correlated quantum gas phase. Science 325, 1224 (2009)

    Article  ADS  Google Scholar 

  24. Serwane F. et al.: Deterministic preparation of a tunable few-fermion system. Science 332, 336 (2011)

    Article  ADS  Google Scholar 

  25. Zürn G. et al.: Fermionization of two distinguishable fermions. Phys. Rev. Lett. 108, 075303 (2012)

    Article  ADS  Google Scholar 

  26. Phillips D.R., Beane S.R., Cohen T.D.: Nonperturbative regularization and renormalization: simple examples from nonrelativistic quantum mechanics. Ann. Phys. (NY). 263, 255 (1998)

    Article  ADS  MATH  Google Scholar 

  27. Frederico T., Delfino A., Tomio L.: Renormalization group invariance of quantum mechanics. Phys. Lett. B 481, 143 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Braaten E., Kusunoki M., Zhang D.: Scattering models for ultracold atoms. Ann. Phys. (NY) 323, 1770 (2008)

    Article  ADS  MATH  Google Scholar 

  29. Cheon T., Shigehara T.: Fermion-boson duality of one-dimensional quantum particles with generalized contact interactions. Phys. Rev. Lett. 82, 2536 (1999)

    Article  ADS  Google Scholar 

  30. Muth D., Fleischhauer M. , Schmidt B.: Discretized versus continuous models of p-wave interacting fermions in one dimension. Phys. Rev. A 82, 013602 (2010)

    Article  ADS  Google Scholar 

  31. Gurarie V., Radzihovsky L.: Resonantly paired fermionic superfluids. Ann. Phys. (NY) 322, 2 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Levinsen J., Massignan P., Chevy F., Lobo C.: p-Wave polaron. Phys. Rev. Lett. 109, 075302 (2012)

    Article  ADS  Google Scholar 

  33. Valiente M., Petrosyan D.: Scattering resonances and two-particle bound states of the extended Hubbard model. J. Phys. B: At. Mol. Opt. Phys. 42, 121001 (2009)

    Article  ADS  Google Scholar 

  34. Girardeau, M.D.: Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 1(6), 516–523 (1960)

  35. Valiente M.: Lattice two-body problem with arbitrary finite-range interactions. Phys. Rev. A 81, 042102 (2010)

    Article  ADS  Google Scholar 

  36. Hallberg K.A.: New trends in density matrix renormalization. Adv. Phys. 55, 477 (2010)

    Article  ADS  Google Scholar 

  37. Yang J.-F., Huang J.-H.: Renormalization of NN scattering: contact potential. Phys. Rev. C 71, 034001 (2005)

    Article  ADS  Google Scholar 

  38. Chevy F., Mora C.: Ultra-cold polarized Fermi gases. Rep. Prog. Phys. 73, 112401 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaj Thomas Zinner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valiente, M., Zinner, N.T. Effective Field Theory of Interactions on the Lattice. Few-Body Syst 56, 845–851 (2015). https://doi.org/10.1007/s00601-015-0991-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-015-0991-y

Keywords

Navigation