Skip to main content
Log in

The QCD strong coupling constant at low energies: a non-extensive treatment

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The compatibility of theoretically calculated values for \(\alpha _s(Q)\), through the renormalization group approach with experimentally determined data is studied. We consider the q-generalized statistical effects through adding a q-non extensive parameter in the fitting of theoretical results on experimental data of the strong coupling constant. Our results at low energies show more appropriate treatment in comparison with those of zero temperature and thermal field theory even by considering the chemical potential and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The needed data can be found in the text and references of this paper.]

References

  1. G.M. Prosperi, M. Raciti, C. Simolo, On the running coupling constant in QCD. Prog. Part. Nucl. Phys. 58, 387 (2007). https://doi.org/10.1016/j.ppnp.2006.09.001

    Article  ADS  Google Scholar 

  2. A. Deur, S.J. Brodsky, G.F. de Teramond, The QCD Running Coupling. Prog. Part. Nucl. Phys. 90, 1 (2016). https://doi.org/10.1007/s00601-016-1048-6

    Article  ADS  Google Scholar 

  3. J.I. Kapusta, C. Gale, Finite-Temperature Field Theory: Principles and Applications (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  4. C. Angelini, R. Pazz, Thermodynamical information on quark matter from the valence quark distribution. Phys. Lett. 113, 4 (1982). https://doi.org/10.1016/0370-2693(82)90053-3

    Article  Google Scholar 

  5. K. Ganesamurthy, V. Devanathan x, M. Rajasekaran, Thermodynamical model for proton spin. Z. Phys. C 52, 589 (1991). https://doi.org/10.1007/BF01562333

  6. C. Bourrely, F. Buccella, G. Miele, G. Migliore, J. Softer, V. Tibullo, Fermi-Dirac distributions for quark partons. Z. Phys. C 62, 431 (1994). https://doi.org/10.1007/BF01555903

    Article  ADS  Google Scholar 

  7. L. Turko, D. Blaschke, D. Prorok, J. Berdermann, An effective model of QCD thermodynamics. J. Phys: Conf. Ser. 455, 012056 (2013). https://doi.org/10.1088/1742-6596/455/1/012056

    Article  Google Scholar 

  8. C. Bourrely, Properties of structure functions from helicity components of light quarks and antiquarks in the statistical model. Phys. Rev. C 98, 055202 (2018). https://doi.org/10.1103/PhysRevC.98.055202

    Article  ADS  Google Scholar 

  9. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479 (1988). https://doi.org/10.1007/BF01016429

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. C. Tsallis, R.S. Mendes, A.R. Plastino, The role of constraints within generalized nonextensive statistics. Phys. A 261, 534 (1998). https://doi.org/10.1016/S0378-4371(98)00437-3

    Article  Google Scholar 

  11. C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer. New York (2009). https://doi.org/10.1007/978-0-387-85359-8

    Article  ADS  MATH  Google Scholar 

  12. M.O. Cáceres, Non-Equilibrium Statistical Physics with Application to Disordered Systems (Springer, New York, 2017)

    Book  Google Scholar 

  13. G. Biro, G.G. Barnafoldi, T.S. Biro, Tsallis-thermometer: a QGP indicator for large and small collisional systems. J. Phys. G 47(10), 105002 (2020). https://doi.org/10.1088/1361-6471/ab8dcb

    Article  ADS  Google Scholar 

  14. G. Biro, G.G. Barnafoldi, T.S. Biro, K. Urmossy, A. Takacs, Systematic analysis of the non-extensive statistical approach in high energy particle collisions - experiment vs theory. Entropy 19, 88 (2017). https://doi.org/10.3390/e19030088

    Article  ADS  Google Scholar 

  15. T.S. Biro, G. Purcsel, K. Urmossy, Non-extensive approach to quark matter. Eur. Phys. J. A 40, 325 (2009). https://doi.org/10.1140/epja/i2009-10806-6

    Article  ADS  Google Scholar 

  16. J. Cleymans, G.I. Lykasov, A.S. Parvan, A.S. Sorin, O.V. Teryaev, D. Worku, Systematic properties of the Tsallis Distribution: energy dependence of parameters in high-energy p-p collisions. Phys. Lett. B 723, 351 (2013). https://doi.org/10.1016/j.physletb.2013.05.029

    Article  ADS  Google Scholar 

  17. A.S. Parvan, O.V. Teryaev, J. Cleymans, Systematic comparison of Tsallis statistics for charged Pions produced in \(pp\) collisions. Eur. Phys. J. A 53(5), 102 (2017). https://doi.org/10.1140/epja/i2017-12301-y

    Article  ADS  Google Scholar 

  18. G. Wilk, Z. Wlodarczyk, Power laws in elementary and heavy-ion collisions: a story of fluctuations and nonextensivity? Eur. Phys. J. A 40, 299 (2009). https://doi.org/10.1140/epja/i2009-10803-9

    Article  ADS  Google Scholar 

  19. I. Bediaga, E.M.F. Curado, J.M. de Miranda, A non-extensive thermodynamical equilibrium approach in \(e^+e^- \rightarrow hadronds\). Phys. A 286, 156 (2000). https://doi.org/10.1016/S0378-4371(00)00368-X

    Article  Google Scholar 

  20. J. Cleymans, D. Worku, The Tsallis distribution in proton-proton collisions at\(\sqrt{s}=0.9 TeV\)at the LHC J. Phys. G: Nucl. Part. Phys. 39 (2012) 025006. https://doi.org/10.1088/0954-3899/39/2/025006

  21. L. Marques, J. Cleymans, A. Deppman, Description of high-energy pp collisions using Tsallis thermodynamics: Transverse momentum and rapidity distributions. Phys. Rev. D 91, 054025 (2015). https://doi.org/10.1103/PhysRevD.91.054025

    Article  ADS  Google Scholar 

  22. A. Deppman, Properties of hadronic systems according to the non-extensive self-consistent thermodynamics. J. Phys. G: Nucl. Part. Phys. 41, 055108 (2014). https://doi.org/10.1088/0954-3899/41/5/055108

    Article  ADS  Google Scholar 

  23. L. Marques, E. Andrade-II, A. Deppman, Nonextensivity of hadronic systems. Phys. Rev. D 87, 114022 (2013). https://doi.org/10.1103/PhysRevD.87.114022

    Article  ADS  Google Scholar 

  24. A. Deppman, E. Megias, Fractals, nonextensive statistics, and QCD. Phys. Rev. D 101(3), 034019 (2020). https://doi.org/10.1103/PhysRevD.101.034019

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Deppman, E. Megias, D.P. Menezes, Fractal structures of Yang-Mills fields and non extensive statistics: applications to high energy physics. MDPI Phys. 2(3), 455 (2020). https://doi.org/10.3390/physics2030026

    Article  Google Scholar 

  26. T. Bhattacharyya, A. S. Parvan, Analytical Results for the Classical and Quantum Tsallis Hadron Transverse Momentum Spectra: the Zeroth Order Approximation and beyond, arXiv:2007.00424 [nucl-th]

  27. Y. P. Zhao, S. Y. Zuo, C. M. Li, QCD phase diagram and critical exponents within the nonextensive Polyakov-Nambu-Jona-Lasinio model, arXiv:2008.09276 [hep-ph]

  28. A.M. Teweldeberhan, A.R. Plastino, H.G. Miller, On the cut-off prescriptions with power-law generalized thermostatistics. Phys. Lett. A 343, 71 (2004). https://doi.org/10.1016/j.physleta.2005.06.026

    Article  ADS  MATH  Google Scholar 

  29. J.M. Conroy, H.G. Miller, A.R. Plastino, Thermodynamic consistency of the \(q\)-deformed Fermi-Dirac distribution in nonextensive thermostatics. Phys. Lett. A 374, 4581 (2010). https://doi.org/10.1016/j.physleta.2010.09.038

    Article  ADS  MATH  Google Scholar 

  30. R. Silva, D.H.A.L. Anselmo, J.S. Alcaniz, Nonextensive Quantum H-Theorem. EPL 89, 59902 (2010). https://doi.org/10.1209/0295-5075/89/10004

    Article  ADS  Google Scholar 

  31. S. Mitra, Thermodynamics and relativistic kinetic theory for q-generalized Bose-Einstein and Fermi-Dirac systems. Eur. Phys. J. C 78, 66 (2018). https://doi.org/10.1140/epjc/s10052-018-5536-3

    Article  ADS  Google Scholar 

  32. A. Peterman, Renormalization Group and the Deep Structure of the Proton. Phys. Rept. 53, 157 (1979). https://doi.org/10.1016/0370-1573(79)90014-0

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Gell-Mann, F. Low, Quantum electrodynamics at small distances. Phys. Rev. 95, 1300 (1954). https://doi.org/10.1103/PhysRev.95.1300

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Five-loop running of the QCD coupling constant. Phys. Rev. Lett. 118, 082002 (2017). https://doi.org/10.1103/PhysRevLett.118.082002

    Article  ADS  Google Scholar 

  35. S. Alekhin et al., \({\alpha }_{s}\) discussions summary. PoS ALPHAS 2019, 026. https://doi.org/10.22323/1.365.0026 (2019)

  36. H.D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346 (1973). https://doi.org/10.1103/PhysRevLett.30.1346

    Article  ADS  Google Scholar 

  37. D.J. Gross, F. Wilczek, Ultraviolet behavior of nonabelian gauge theories. Phys. Rev. Lett. 30, 1343 (1973). https://doi.org/10.1103/PhysRevLett.30.1343

    Article  ADS  Google Scholar 

  38. W.E. Caswell, Asymptotic behavior of nonabelian gauge theories to two loop order. Phys. Rev. Lett. 33, 244 (1974). https://doi.org/10.1103/PhysRevLett.33.244

    Article  ADS  Google Scholar 

  39. L.V. Avdeev, O.V. Tarasov, A.A. Vladimirov, Vanishing of the three loop charge renormalization function in a supersymmetric gauge theory. Phys. Lett. B 96, 94 (1980). https://doi.org/10.1016/0370-2693(80)90219-1

    Article  ADS  Google Scholar 

  40. A.V. Bednyakova, A.F. Pikelnerb, Four-loop strong coupling beta-function in the standard model. Phys. Lett. B 762, 151 (2016). https://doi.org/10.1016/j.physletb.2016.09.007

    Article  ADS  Google Scholar 

  41. M. Tanabashi et al., [Particle Data Group], Review of Particle Physics. Phys. Rev. D 98 (2018) 030001 and 2019 update. https://doi.org/10.1103/PhysRevD.98.030001

  42. CMS Collaboration, Measurement and QCD analysis of double-differential inclusive jet cross-sections in pp collisions at \(\sqrt{s}=8 TeV\) and ratios to 2.76 and 7 TeV, JHEP 03 (2017) 156. https://doi.org/10.1007/JHEP03(2017)156

  43. CMS Collaboration, Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in pp collisions at \(\sqrt{s}=7 TeV\) and first determination of the strong coupling constant in the TeV range. Eur. Phys. J. C 73, 2604 (2013). https://doi.org/10.1140/epjc/s10052-013-2604-6

  44. CMS Collaboration, Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at \(\sqrt{s}=7 TeV\) and determination of the strong coupling constant in the TeV range. Eur. Phys. J. C 75, 186 (2015). https://doi.org/10.1140/epjc/s10052-015-3376-y

  45. CMS Collaboration, Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at \(\sqrt{s}= 7 TeV\). Eur. Phys. J. C 75, 288 (2015). https://doi.org/10.1140/epjc/s10052-015-3499-1

  46. CMS Collaboration, Determination of the top-quark pole mass and strong coupling constant from the \(t{\bar{t}}\) production cross section in pp collisions at \(\sqrt{s}= 7 TeV\). Phys. Lett. B 728, 496 (2014). https://doi.org/10.1016/j.physletb.2013.12.009. https://doi.org/10.1016/j.physletb.2014.08.040

  47. D0 Collaboration, Determination of the strong coupling constant from the inclusive jet cross section in \(p{\bar{p}}\) collisions at \(\sqrt{s}= 1.96 TeV\). Phys. Rev. D 80, 111107 (2009). https://doi.org/10.1103/PhysRevD.80.111107

  48. D0 Collaboration, Measurement of angular correlations of jets at \(\sqrt{s}= 1.96 TeV\) and determination of the strong coupling at high momentum transfers. Phys. Lett. B 718, 56 (2012). https://doi.org/10.1016/j.physletb.2012.10.003

  49. ATLAS Collaboration, Measurement of transverse energy-energy correlations in multi-jet events in pp collisions at \(\sqrt{s}= 7 TeV\) using the ATLAS detector and determination of the strong coupling constant \(\alpha _s(M_Z)\). Phys. Lett. B 750, 427 (2015). https://doi.org/10.1016/j.physletb.2015.09.050

  50. K.A. Olive et al., [Particle Data Group], Review of Particle Physics. Chin. Phys. C 38, 090001 (2014). https://doi.org/10.1088/1674-1137/38/9/090001

    Article  ADS  Google Scholar 

  51. H1 Collaboration, Measurement of multijet production in ep collisions at high \(Q^2\) and determination of the strong coupling \(\alpha _s\). Eur. Phys. J. C 75, 65 (2015). https://doi.org/10.1140/epjc/s10052-014-3223-6

    Article  Google Scholar 

  52. V. Andreev, A. Baghdasaryan, K. Begzsuren et al., H1 Collaboration, Measurement of Jet Production Cross Sections in Deep-inelastic ep Scattering at HERA. Phys. J. C 77, 215 (2017). https://doi.org/10.1140/epjc/s10052-017-4717-9

    Article  ADS  Google Scholar 

  53. P. A. Zyla et al, [Particle Data Group], Review of Particle Physics, PTEP 2020, (2020) 083C01. https://doi.org/10.1093/ptep/ptaa104

  54. M. Dalla Brida et al, [ALPHA Collaboration], Determination of the QCD \(\Lambda \)-parameter and the accuracy of perturbation theory at high energies. Phys. Rev. Lett. 117, 182001 (2016). https://doi.org/10.1103/PhysRevLett.117.182001

  55. M. Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, 2000). https://doi.org/10.1017/CBO9780511721700

  56. E. Braaten, R.D. Pisarski, Resummation and gauge invariance of the gluon damping rate in hot QCD. Phys. Rev. Lett. 64, 1338 (1990). https://doi.org/10.1103/PhysRevLett.64.1338

    Article  ADS  Google Scholar 

  57. M. Laine, Y. Schroder, Two-loop QCD gauge coupling at high temperatures. JHEP 0503, 067 (2005). https://doi.org/10.1088/1126-6708/2005/03/067

  58. N. Haque, A. Bandyopadhyay, J.O. Andersen, M.G. Mustafa, M. Strickland, N. Su, Three-loop HTLpt thermodynamics at finite temperature and chemical potential. JHEP 1405, 027 (2014). https://doi.org/10.1007/JHEP05(2014)027

    Article  ADS  Google Scholar 

  59. J.O. Andersen, N. Haque, M.G. Mustafa, M. Strickland, Three-loop hard-thermal-loop perturbation theory thermodynamics at finite temperature and finite baryonic and isospin chemical potential. Phys. Rev. D 93, 054045 (2016). https://doi.org/10.1103/PhysRevD.93.054045

    Article  ADS  Google Scholar 

  60. T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, The Four loop \(\beta \)-function in quantum chromodynamics. Phys. Lett. B 400, 379 (1997). https://doi.org/10.1016/S0370-2693(97)00370-5

    Article  ADS  Google Scholar 

  61. K. Ganesamurthy, V. Devanathan, M. Rajasekaran, Thermodynamical model for proton spin. Z. Phys. C 52, 589 (1991). https://doi.org/10.1007/BF01562333

    Article  ADS  Google Scholar 

  62. A. Ngelini, R. Pazzi, Thermodynamical information on quark matter from the nucleon valence quark distribution. Phys. Lett. B 113, 343 (1982). https://doi.org/10.1016/0370-2693(82)90053-3

    Article  ADS  Google Scholar 

  63. L.A. Trevisan, C. Mirez, T. Frederico, L. Tomio, Quark sea structure functions of the nucleon in a statistical model. Eur. Phys. J. C 56, 221 (2008). https://doi.org/10.1140/epjc/s10052-008-0651-1

    Article  ADS  Google Scholar 

  64. C. Bourrely, J. Soffer, F. Buccella, The statistical parton distributions: status and prospects. Eur. Phys. J. C 41, 327 (2005). https://doi.org/10.1140/epjc/s2005-02205-2

    Article  ADS  Google Scholar 

  65. W.M. Alberico, A. Lavagno, P. Quarati, Non-extensive statistics, fluctuations and correlations in high-energy nuclear collisions. Eur. Phys. J. C 12, 499 (2000). https://doi.org/10.1007/s100529900220

    Article  ADS  Google Scholar 

  66. W.M. Alberico, A. Lavagno, Non-extensive statistical effects in high energy collisions. Eur. Phys. J. A 40, 313 (2009). https://doi.org/10.1140/epja/i2009-10809-3

    Article  ADS  Google Scholar 

  67. M.D. Azmi, J. Cleymans, Transverse momentum distributions in proton-proton collisions at LHC energies and Tsallis thermodynamics. J. Phys. G: Nucl. Part. Phys. 41, 065001 (2014). https://doi.org/10.1088/0954-3899/41/6/065001

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Nematollahi.

Additional information

Communicated by Tamas Biro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nematollahi, H., Javidan, K. & Yazdanpanah, M.M. The QCD strong coupling constant at low energies: a non-extensive treatment. Eur. Phys. J. A 57, 78 (2021). https://doi.org/10.1140/epja/s10050-021-00391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00391-1

Navigation