Skip to main content

Advertisement

Log in

Exploring single nucleotide polymorphisms previously related to obesity and metabolic traits in pediatric-onset type 2 diabetes

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

To evaluate the association of 64 obesity-related polymorphisms with pediatric-onset type 2 diabetes and other glucose- and insulin-related traits in Mexican children.

Methods

Case–control and case–sibling designs were followed. We studied 99 patients with pediatric-onset type 2 diabetes, their siblings (n = 101) without diabetes, 83 unrelated pediatric controls and 137 adult controls. Genotypes were determined for 64 single nucleotide polymorphisms, and a possible association was examined between those genotypes and type 2 diabetes and other quantitative traits, after adjusting for age, sex and body mass index.

Results

In the case–pediatric control and case–adult control analyses, five polymorphisms were associated with increased likelihood of pediatric-onset type 2 diabetes; only one of these polymorphisms (CADM2/rs1307880) also showed a consistent effect in the case–sibling analysis. The associations in the combined analysis were as follows: ADORA1/rs903361 (OR 1.9, 95% CI 1.2; 3.0); CADM2/rs13078807 (OR 2.2, 95% CI 1.2; 4.0); GNPDA2/rs10938397 (OR 2.2, 95% CI 1.4; 3.7); VEGFA/rs6905288 (OR 1.4, 95% CI 1.1; 2.1) and FTO/rs9939609 (OR 1.8, 95% CI 1.0; 3.2). We also identified 16 polymorphisms nominally associated with quantitative traits in participants without diabetes.

Conclusions

ADORA/rs903361, CADM2/rs13078807, GNPDA2/rs10938397, VEGFA/rs6905288 and FTO/rs9939609 are associated with an increased risk of pediatric-onset type 2 diabetes in the Mexican population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hernandez-Avila M, Gutierrez JP, Reynoso-Noveron N (2013) Diabetes mellitus in Mexico. Status of the epidemic. Salud Publica Mex 55:S129–S136

    Article  PubMed  Google Scholar 

  2. Jimenez-Corona A, Rojas R, Gomez-Perez FJ, Aguilar-Salinas CA (2010) Early-onset type 2 diabetes in a Mexican survey: results from the National Health and Nutrition Survey 2006. Salud Publica Mex 52(Suppl1):S27–S35

    Article  PubMed  Google Scholar 

  3. Guerrero-Romero F, Violante R, Rodriguez-Moran M (2009) Distribution of fasting plasma glucose and prevalence of impaired fasting glucose, impaired glucose tolerance and type 2 diabetes in the Mexican paediatric population. Paediatr Perinat Epidemiol 23(4):363–369

    Article  PubMed  Google Scholar 

  4. Wilmot EG, Davies MJ, Yates T, Benhalima K, Lawrence IG, Khunti K (2010) Type 2 diabetes in younger adults: the emerging UK epidemic. Postgrad Med J 86(1022):711–718

    Article  PubMed  Google Scholar 

  5. Langenberg C, Sharp SJ, Franks PW et al (2014) Gene-lifestyle interaction and type 2 diabetes: the EPIC interact case-cohort study. PLoS Med 11(5):e1001647

    Article  PubMed  PubMed Central  Google Scholar 

  6. Miranda-Lora AL, Vilchis-Gil J, Molina-Díaz M, Flores-Huerta S, Klünder-Klünder M (2017) Heritability, parental transmission and environment correlation of pediatric-onset type 2 diabetes mellitus and metabolic syndrome-related traits. Diabetes Res Clin Pract 126(4):151–159

    Article  PubMed  Google Scholar 

  7. Ling C, Groop L (2009) Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 58(12):2718–2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Volkov P, Bacos K, Ofori JK et al (2017) Whole-genome bisulfite sequencing of human pancreatic islets reveals novel differentially methylated regions in type 2 diabetes pathogenesis. Diabetes. doi:10.2337/db16-0996

    PubMed  Google Scholar 

  9. Prasad RB, Groop L (2015) Genetics of type 2 diabetes-pitfalls and possibilities. Genes (Basel) 6(1):87–123

    CAS  Google Scholar 

  10. Hindorff L, MacArthur J, Morales J et al (2014) A catalog of published genome-wide association studies. Available at: www.genome.gov/gwastudies. Accessed [July 20th, 2016]. Nucleic Acids Res 42:D1001–D1006

    Article  PubMed  Google Scholar 

  11. Morgan AR (2012) Determining genetic risk factors for pediatric type 2 diabetes. Curr Diab Rep 12(1):88–92

    Article  CAS  PubMed  Google Scholar 

  12. Peng S, Zhu Y, Lü B, Xu F, Li X, Lai M (2013) TCF7L2 gene polymorphisms and type 2 diabetes risk: a comprehensive and updated meta-analysis involving 121 174 subjects. Mutagenesis 28(1):25–37

    Article  CAS  PubMed  Google Scholar 

  13. Dabelea D, Dolan LM, D’Agostino R Jr et al (2011) Association testing of TCF7L2 polymorphisms with type 2 diabetes in multi-ethnic youth. Diabetologia 54(3):535–539

    Article  CAS  PubMed  Google Scholar 

  14. Miranda-Lora AL, Cruz M, Molina-Díaz M, Gutiérrez J, Flores-Huerta S, Klünder-Klünder M (2017) Associations of common variants in the SLC16A11, TCF7L2, and ABCA1 genes with pediatric-onset type 2 diabetes and related glycemic traits in families: a case–control and case-parent trio study. Pediatric Diabetes. doi:10.1111/pedi.12497

    PubMed  Google Scholar 

  15. American Diabetes Association (2016) 2. Classification and diagnosis of diabetes. Diabetes Care 39(Supplement 1):S13–S22

    Article  Google Scholar 

  16. Rubio-Cabezas O, Hattersley AT, Njølstad PR et al (2014) The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 15(S20):47–64

    Article  CAS  PubMed  Google Scholar 

  17. Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C (2005) Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics 115(4):e500–e503

    Article  PubMed  Google Scholar 

  18. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419

    Article  CAS  PubMed  Google Scholar 

  19. Katz A, Nambi SS, Mather K et al (2000) Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 85(7):2402–2410

    Article  CAS  PubMed  Google Scholar 

  20. Mejia-Benitez A, Klunder-Klunder M, Yengo L et al (2013) Analysis of the contribution of FTO, NPC1, ENPP1, NEGR1, GNPDA2 and MC4R genes to obesity in Mexican children. BMC Med Genet 14(1):21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ruano G, Bernene J, Windemuth A et al (2009) Physiogenomic comparison of edema and BMI in patients receiving rosiglitazone or pioglitazone. Clin Chim Acta 400(1–2):48–55

    Article  CAS  PubMed  Google Scholar 

  22. Paternoster L, Evans DM, Nohr EA et al (2011) Genome-wide population-based association study of extremely overweight young adults—the GOYA study. PLoS ONE 6(9):e24303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Speliotes EK, Willer CJ, Berndt SI et al (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42(11):937–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Willer CJ, Speliotes EK, Loos RJ et al (2009) Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 41(1):25–34

    Article  CAS  PubMed  Google Scholar 

  25. Frayling TM, Timpson NJ, Weedon MN et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316(5826):889–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cho YS, Go MJ, Kim YJ et al (2009) A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 41(5):527–534

    Article  CAS  PubMed  Google Scholar 

  27. Berndt SI, Gustafsson S, Magi R et al (2013) Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet 45(5):501–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heid IM, Jackson AU, Randall JC et al (2010) Meta-analysis identifies 13 new loci associated with waist–hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 42(11):949–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Davies RW, Wells GA, Stewart AF et al (2012) A genome-wide association study for coronary artery disease identifies a novel susceptibility locus in the major histocompatibility complex. Circ Cardiovasc Genet 5(2):217–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xi B, Takeuchi F, Meirhaeghe A et al (2014) Associations of genetic variants in/near body mass index-associated genes with type 2 diabetes: a systematic meta-analysis. Clin Endocrinol (Oxf) 81(5):702–710

    Article  CAS  Google Scholar 

  31. Kong X, Zhang X, Zhao Q et al (2014) Obesity-related genomic loci are associated with type 2 diabetes in a Han Chinese population. PLoS ONE 9(8):e104486

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hertel JK, Johansson S, Sonestedt E et al (2011) FTO, type 2 diabetes, and weight gain throughout adult life: a meta-analysis of 41,504 subjects from the Scandinavian HUNT, MDC, and MPP studies. Diabetes 60(5):1637–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Manning AK, Hivert MF, Scott RA et al (2012) A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 44(6):659–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Perry JR, Voight BF, Yengo L et al (2012) Stratifying type 2 diabetes cases by BMI identifies genetic risk variants in LAMA1 and enrichment for risk variants in lean compared to obese cases. PLoS Genet 8(5):e1002741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li S, Zhao JH, Luan J et al (2011) Genetic predisposition to obesity leads to increased risk of type 2 diabetes. Diabetologia 54(4):776–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nead KT, Li A, Wehner MR et al (2015) Contribution of common non-synonymous variants in PCSK1 to body mass index variation and risk of obesity: a systematic review and meta-analysis with evidence from up to 331 175 individuals. Hum Mol Genet 24(12):3582–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a Mexican Federal Funds Grant (HIM 2014/041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Klünder-Klünder.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Human and animal rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments.

Informed consent

Informed consent and assessment was obtained from all participants for being included in the study.

Additional information

Managed by Massimo Federici.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda-Lora, A.L., Cruz, M., Aguirre-Hernández, J. et al. Exploring single nucleotide polymorphisms previously related to obesity and metabolic traits in pediatric-onset type 2 diabetes. Acta Diabetol 54, 653–662 (2017). https://doi.org/10.1007/s00592-017-0987-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-017-0987-9

Keywords

Navigation