Skip to main content

Advertisement

Log in

Prolonged episodes of hypoglycaemia in HNF4A-MODY mutation carriers with IGT. Evidence of persistent hyperinsulinism into early adulthood

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

HNF4A is an established cause of maturity onset diabetes of the young (MODY). Congenital hyperinsulinism can also be associated with mutations in the HNF4A gene. A dual phenotype is observed in HNF4A-MODY with hyperinsulinaemic hypoglycaemia in the neonatal period progressing to diabetes in adulthood. The nature and timing of the transition remain poorly defined. We performed an observational study to establish changes in glycaemia and insulin secretion over a 6-year period. We investigated glycaemic variability and hypoglycaemia in HNF4A-MODY using a continuous glucose monitoring system (CGMS).

Methods

An OGTT with measurement of glucose, insulin and C-peptide was performed in HNF4A participants with diabetes mellitus (DM) (n = 14), HNF4A-IGT (n = 7) and age- and BMI-matched MODY negative family members (n = 10). Serial assessment was performed in the HNF4A-IGT cohort. In a subset of HNF4A-MODY mutation carriers (n = 10), CGMS was applied over a 72-h period.

Results

There was no deterioration in glycaemic control in the HNF4A-IGT cohort. The fasting glucose-to-insulin ratio was significantly lower in the HNF4A-IGT cohort when compared to the normal control group (0.13 vs. 0.24, p = 0.03). CGMS profiling demonstrated prolonged periods of hypoglycaemia in the HNF4A-IGT group when compared to the HNF4A-DM group (432 vs. 138 min p = 0.04).

Conclusions

In a young adult HNF4A-IGT cohort, we demonstrate preserved glucose, insulin and C-peptide secretory responses to oral glucose. Utilising CGMS, prolonged periods of hypoglycaemia are evident despite a median age of 21 years. We propose a prolonged hyperinsulinaemic phase into adulthood is responsible for the notable hypoglycaemic episodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Frayling TM, Evans JC, Bulman MP et al (2001) Beta-cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors. Diabetes 50(Suppl 1):S94–S100

    Article  CAS  PubMed  Google Scholar 

  2. Antosik K, Gnys P, De Franco E et al (2016) Single patient in GCK-MODY family successfully re-diagnosed into GCK-PNDM through targeted next-generation sequencing technology. Acta Diabetol 53:337–338

    Article  PubMed  Google Scholar 

  3. Alkorta-Aranburu G, Carmody D, Cheng YW et al (2014) Phenotypic heterogeneity in monogenic diabetes: the clinical and diagnostic utility of a gene panel-based next-generation sequencing approach. Mol Genet Metab 113:315–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ellard S, Lango Allen H, De Franco E et al (2013) Improved genetic testing for monogenic diabetes using targeted next-generation sequencing. Diabetologia 56:1958–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kyithar MP, Bacon S, Pannu KK et al (2011) Identification of HNF1A-MODY and HNF4A-MODY in Irish families: phenotypic characteristics and therapeutic implications. Diabetes Metab 37:512–519

    Article  CAS  PubMed  Google Scholar 

  6. Murphy R, Ellard S, Hattersley AT (2008) Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab 4:200–213

    Article  CAS  PubMed  Google Scholar 

  7. Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S (2010) Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia 53:2504–2508

    Article  CAS  PubMed  Google Scholar 

  8. Carmody D, Naylor RN, Bell CD et al (2016) GCK-MODY in the US National monogenic diabetes registry: frequently misdiagnosed and unnecessarily treated. Acta Diabetol. doi:10.1007/s00592-016-0859-8

  9. Fendler W, Rizzo M, Borowiec M et al (2014) Less but better: cardioprotective lipid profile of patients with GCK-MODY despite lower HDL cholesterol level. Acta Diabetol 51:625–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pearson ER, Starkey BJ, Powell RJ, Gribble FM, Clark PM, Hattersley AT (2003) Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 362:1275–1281

    Article  CAS  PubMed  Google Scholar 

  11. Bacon S, Kyithar MP, Rizvi SR et al (2015) Successful maintenance on sulfonylurea therapy and low diabetes complication rates in a HNF1A-MODY cohort. Diabetic Med 33:976–984

    Article  CAS  PubMed  Google Scholar 

  12. Steele AM, Shields BM, Wensley KJ, Colclough K, Ellard S, Hattersley AT (2014) Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. JAMA 311:279–286

    Article  CAS  PubMed  Google Scholar 

  13. Bacon S, Schmid J, McCarthy A et al (2015) The clinical management of hyperglycemia in pregnancy complicated by maturity-onset diabetes of the young. Am J Obstet Gynecol 213(236):e231–e237

    Google Scholar 

  14. Bitterman O, Iafusco D, Torcia F, Tinto N, Napoli A (2016) A dizygotic twin pregnancy in a MODY 3-affected woman. Acta Diabetol. doi:10.1007/s00592-016-0848-y

  15. Herman WH, Fajans SS, Ortiz FJ et al (1994) Abnormal insulin secretion, not insulin resistance, is the genetic or primary defect of MODY in the RW pedigree. Diabetes 43:40–46

    Article  CAS  PubMed  Google Scholar 

  16. Tripathy D, Carlsson AL, Lehto M, Isomaa B, Tuomi T, Groop L (2000) Insulin secretion and insulin sensitivity in diabetic subgroups: studies in the prediabetic and diabetic state. Diabetologia 43:1476–1483

    Article  CAS  PubMed  Google Scholar 

  17. Fajans SS, Brown MB (1993) Administration of sulfonylureas can increase glucose-induced insulin secretion for decades in patients with maturity-onset diabetes of the young. Diabetes Care 16:1254–1261

    Article  CAS  PubMed  Google Scholar 

  18. Gupta RK, Vatamaniuk MZ, Lee CS et al (2005) The MODY1 gene HNF-4alpha regulates selected genes involved in insulin secretion. J Clin Investig 115:1006–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pearson ER, Boj SF, Steele AM et al (2007) Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. PLoS Med 4:e118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Flanagan SE, Kapoor RR, Mali G et al (2010) Diazoxide-responsive hyperinsulinemic hypoglycemia caused by HNF4A gene mutations. Eur J Endocrinol/Eur Fed Endocr Soc 162:987–992

    Article  CAS  Google Scholar 

  21. Kapoor RR, Locke J, Colclough K et al (2008) Persistent hyperinsulinemic hypoglycemia and maturity-onset diabetes of the young due to heterozygous HNF4A mutations. Diabetes 57:1659–1663

    Article  CAS  PubMed  Google Scholar 

  22. McGlacken-Byrne SM, Hawkes CP, Flanagan SE, Ellard S, McDonnell CM, Murphy NP (2014) The evolving course of HNF4A hyperinsulinaemic hypoglycaemia—a case series. Diabetic Med 31:e1–e5

    Article  CAS  PubMed  Google Scholar 

  23. Mari A, Pacini G, Murphy E, Ludvik B, Nolan JJ (2001) A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care 24:539–548

    Article  CAS  PubMed  Google Scholar 

  24. Legro RS, Finegood D, Dunaif A (1998) A fasting glucose to insulin ratio is a useful measure of insulin sensitivity in women with polycystic ovary syndrome. J Clin Endocrinol Metab 83:2694–2698

    CAS  PubMed  Google Scholar 

  25. Stride A, Vaxillaire M, Tuomi T et al (2002) The genetic abnormality in the beta cell determines the response to an oral glucose load. Diabetologia 45:427–435

    Article  CAS  PubMed  Google Scholar 

  26. Zhou J, Li H, Ran X et al (2011) Establishment of normal reference ranges for glycemic variability in Chinese subjects using continuous glucose monitoring. Med Sci Monit 17:CR9–CR13

    PubMed  PubMed Central  Google Scholar 

  27. Seaquist ER, Anderson J, Childs B et al (2013) Hypoglycemia and diabetes: a report of a workgroup of the American Diabetes Association and the Endocrine Society. Diabetes Care 36:1384–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fajans SS, Bell GI (2007) Macrosomia and neonatal hypoglycaemia in RW pedigree subjects with a mutation (Q268X) in the gene encoding hepatocyte nuclear factor 4alpha (HNF4A). Diabetologia 50:2600–2601

    Article  CAS  PubMed  Google Scholar 

  29. Hill NR, Oliver NS, Choudhary P, Levy JC, Hindmarsh P, Matthews DR (2011) Normal reference range for mean tissue glucose and glycemic variability derived from continuous glucose monitoring for subjects without diabetes in different ethnic groups. Diabetes Technol Ther 13:921–928

    Article  PubMed  PubMed Central  Google Scholar 

  30. Aye T, Reiss AL, Kesler S et al (2011) The feasibility of detecting neuropsychologic and neuroanatomic effects of type 1 diabetes in young children. Diabetes Care 34:1458–1462

    Article  PubMed  PubMed Central  Google Scholar 

  31. Aye T, Barnea-Goraly N, Ambler C et al (2012) White matter structural differences in young children with type 1 diabetes: a diffusion tensor imaging study. Diabetes Care 35:2167–2173

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shehata G, Eltayeb A (2010) Cognitive function and event-related potentials in children with type 1 diabetes mellitus. J Child Neurol 25:469–474

    Article  PubMed  Google Scholar 

  33. Lin A, Northam EA, Werther GA, Cameron FJ (2015) Risk factors for decline in IQ in youth with type 1 diabetes over the 12 years from diagnosis/illness onset. Diabetes Care 38:236–242

    Article  PubMed  Google Scholar 

  34. Arya VB, Rahman S, Senniappan S, Flanagan SE, Ellard S, Hussain K (2014) HNF4A mutation: switch from hyperinsulinaemic hypoglycaemia to maturity-onset diabetes of the young, and incretin response. Diabetic Med 31:e11–e15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Byrne MM, Sturis J, Fajans SS et al (1995) Altered insulin secretory responses to glucose in subjects with a mutation in the MODY1 gene on chromosome 20. Diabetes 44:699–704

    Article  CAS  PubMed  Google Scholar 

  36. Herman WH, Fajans SS, Smith MJ, Polonsky KS, Bell GI, Halter JB (1997) Diminished insulin and glucagon secretory responses to arginine in nondiabetic subjects with a mutation in the hepatocyte nuclear factor-4alpha/MODY1 gene. Diabetes 46:1749–1754

    Article  CAS  PubMed  Google Scholar 

  37. Ilag LL, Tabaei BP, Herman WH et al (2000) Reduced pancreatic polypeptide response to hypoglycemia and amylin response to arginine in subjects with a mutation in the HNF-4alpha/MODY1 gene. Diabetes 49:961–968

    Article  CAS  PubMed  Google Scholar 

  38. Bonner C, Kerr-Conte J, Gmyr V et al (2015) Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med 21:512–517

    Article  CAS  PubMed  Google Scholar 

  39. Rahman SA, Nessa A, Hussain K (2015) Molecular mechanisms of congenital hyperinsulinism. J Mol Endocrinol 54:R119–R129

    Article  CAS  PubMed  Google Scholar 

  40. Sugden MC, Holness MJ (2004) Potential role of peroxisome proliferator-activated receptor-alpha in the modulation of glucose-stimulated insulin secretion. Diabetes 53(Suppl 1):S71–S81

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the laboratory staff in the Mater Misericordiae University Hospital. We would also like to thank Dr. Kevin Colclough and Prof. Sian Ellard of University of Exeter Medical School, Exeter for performing genetic analysis of the cohort.

Funding

This study was supported by the Health Professional Fellowship grant from the Health Research Board of Ireland awarded to Siobhán Bacon. Grant Number; HPF-2013-459. Mentor: Prof Maria M Byrne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Byrne.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent

Informed consent was obtained from all patients for being included in the study.

Additional information

Managed by Antonio Secchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacon, S., Kyithar, M.P., Condron, E.M. et al. Prolonged episodes of hypoglycaemia in HNF4A-MODY mutation carriers with IGT. Evidence of persistent hyperinsulinism into early adulthood. Acta Diabetol 53, 965–972 (2016). https://doi.org/10.1007/s00592-016-0890-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-016-0890-9

Keywords

Navigation