Skip to main content

Advertisement

Log in

The minimal promoter region of the dense-core vesicle protein IA-2: transcriptional regulation by CREB

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

IA-2 is a transmembrane protein found in the dense-core vesicles (DCV) of neuroendocrine cells and one of the major autoantigens in type 1 diabetes. DCV are involved in the secretion of hormones (e.g., insulin) and neurotransmitters. Stimulation of pancreatic β cells with glucose upregulates the expression of IA-2 and an increase in IA-2 results in an increase in the number of DCV. Little is known, however, about the promoter region of IA-2 or the transcriptional factors that regulate the expression of this gene.

Methods

In the present study, we constructed eight deletion fragments from the upstream region of the IA-2 transcription start site and linked them to a luciferase reporter.

Results

By this approach, we have identified a short bp region (−216 to +115) that has strong promoter activity. We also identified a transcription factor, cAMP responsive element-binding protein (CREB), which binds to two CREB-related binding sites located in this region. The binding of CREB to these sites enhanced IA-2 transcription by more than fivefold. We confirmed these findings by site-directed mutagenesis, chromatin immunoprecipitation assays and RNAi inhibition.

Conclusion

Based on these findings, we conclude that the PKA pathway is a critical, but not the exclusive signaling pathway involved in IA-2 gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lan MS, Wasserfall C, Maclaren NK, Notkins AL (1996) IA-2, a transmembrane protein of the protein tyrosine phosphatase family, is a major autoantigen in insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 93:6367–6370

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Lu J, Li Q, Xie H et al (1996) Identification of a second transmembrane protein tyrosine phosphatase, IA-2β, as an autoantigen in insulin-dependent diabetes mellitus: precursor of the 37-kDa tryptic fragment. Proc Natl Acad Sci USA 93:2307–2311

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Xie J, Zhang B, Lan MS, Notkins AL (1998) Genomic structure and promoter sequence of the insulin-dependent diabetes mellitus autoantigen, IA-2 (PTPRN). Genomics 54:338–343

    Article  CAS  PubMed  Google Scholar 

  4. Cai T, Hirai H, Zhang G et al (2011) Deletion of Ia-2 and/or Ia-2β in mice decreases insulin secretion by reducing the number of dense core vesicles. Diabetologia 54:2347–2357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kim SM, Power A, Brown TM et al (2009) Deletion of the secretory vesicle proteins IA-2 and IA-2β disrupts circadian rhythms of cardiovascular and physical activity. FASEB J 23:3226–3232

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Harashima S, Clark A, Christie MR, Notkins AL (2005) The dense core transmembrane vesicle protein IA-2 is a regulator of vesicle number and insulin secretion. Proc Natl Acad Sci USA 102:8704–8709

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Cai T, Chen X, Wang R et al (2011) Expression of insulinoma-associated 2 (INSM2) in pancreatic islet cells is regulated by the transcription factors Ngn3 and NeuroD1. Endocrinology 152:1961–1969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Miyazaki J, Araki K, Yamato E et al (1990) Establishment of a pancreatic β cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127:126–132

    Article  CAS  PubMed  Google Scholar 

  9. Luther MJ, Hauge-Evans A, Souza KL et al (2006) MIN6 β-cell-β-cell interactions influence insulin secretory responses to nutrients and non-nutrients. Biochem Biophys Res Commun 343:99–104

    CAS  PubMed  Google Scholar 

  10. Seissler J, Nguyen TB, Aust G, Steinbrenner H, Scherbaum WA (2000) Regulation of the diabetes-associated autoantigen IA-2 in INS-1 pancreatic β-cells. Diabetes 49:1137–1141

    Article  CAS  PubMed  Google Scholar 

  11. Lobner K, Steinbrenner H, Roberts GA et al (2002) Different regulated expression of the tyrosine phosphatase-like proteins IA-2 and phogrin by glucose and insulin in pancreatic islets: relationship to development of insulin secretory responses in early life. Diabetes 51:2982–2988

    Article  CAS  PubMed  Google Scholar 

  12. Henquin JC, Nenquin M, Szollosi A, Kubosaki A, Notkins AL (2008) Insulin secretion in islets from mice with a double knockout for the dense core vesicle proteins islet antigen-2 (IA-2) and IA-2β. J Endocrinol 196:573–581

    CAS  PubMed  Google Scholar 

  13. Katti MV, Sakharkar MK, Ranjekar PK, Gupta VS (2000) TRES: comparative promoter sequence analysis. Bioinformatics 16:739–740

    Article  CAS  PubMed  Google Scholar 

  14. Misra UK, Pizzo SV (2005) Coordinate regulation of forskolin-induced cellular proliferation in macrophages by protein kinase A/cAMP-response element-binding protein (CREB) and Epac1-Rap1 signaling: effects of silencing CREB gene expression on Akt activation. J Biol Chem 280:38276–38289

    CAS  PubMed  Google Scholar 

  15. Hay CW, Ferguson LA, Docherty K (2007) ATF-2 stimulates the human insulin promoter through the conserved CRE2 sequence. Biochim Biophys Acta 1769:79–91

    CAS  PubMed  Google Scholar 

  16. Ban N, Yamada Y, Someya Y et al (2000) Activating transcription factor-2 is a positive regulator in CaM kinase IV-induced human insulin gene expression. Diabetes 49:1142–1148

    Article  CAS  PubMed  Google Scholar 

  17. Chuang TD, Guh JY, Chiou SJ, Chen HC, Hung WC, Chuang LY (2007) Sp1 and Smad3 are required for high glucose-induced p21(WAF1) gene transcription in LLC-PK1 cells. J Cell Biochem 102:1190–1201

    CAS  PubMed  Google Scholar 

  18. Wutthisathapornchai A, Vongpipatana T, Muangsawat S, Boonsaen T, MacDonald MJ, Jitrapakdee S (2014) Multiple e-boxes in the distal promoter of the rat pyruvate carboxylase gene function as a glucose-responsive element. PLoS One 9:e102730

    Article  PubMed Central  PubMed  Google Scholar 

  19. Jansson D, Ng AC, Fu A, Depatie C, Al Azzabi M, Screaton RA (2008) Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2. Proc Natl Acad Sci USA 105:10161–10166

    PubMed Central  PubMed  Google Scholar 

  20. Chepurny OG, Kelley GG, Dzhura I et al (2010) PKA-dependent potentiation of glucose-stimulated insulin secretion by Epac activator 8-pCPT-2′-O-Me-cAMP-AM in human islets of Langerhans. Am J Physiol Endocrinol Metab 298:E622–E633

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Euskirchen G, Snyder M (2004) A plethora of sites. Nat Genet 36:325–326

    CAS  PubMed  Google Scholar 

  22. Fernando R, Vonberg A, Atkins SJ, Pietropaolo S, Pietropaolo M, Smith TJ (2014) Human fibrocytes express multiple antigens associated with autoimmune endocrine diseases. J Clin Endocrinol Metab 99:E796–E803

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Klein DC, Bailey MJ, Carter DA et al (2010) Pineal function: impact of microarray analysis. Mol Cell Endocrinol 314:170–183

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Chen CL, Mahalingam D, Osmulski P et al (2013) Single-cell analysis of circulating tumor cells identifies cumulative expression patterns of EMT-related genes in metastatic prostate cancer. Prostate 73:813–826

    PubMed  Google Scholar 

  25. Xie H, Notkins AL, Lan MS (1996) IA-2, a transmembrane protein tyrosine phosphatase, is expressed in human lung cancer cell lines with neuroendocrine phenotype. Cancer Res 56:2742–2744

    CAS  PubMed  Google Scholar 

  26. Altarejos JY, Montminy M (2011) CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12:141–151

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Delghandi MP, Johannessen M, Moens U (2005) The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells. Cell Signal 17:1343–1351

    CAS  PubMed  Google Scholar 

  28. Dalle S, Quoyer J, Varin E, Costes S (2011) Roles and regulation of the transcription factor CREB in pancreatic β-cells. Curr Mol Pharmacol 4:187–195

    CAS  PubMed  Google Scholar 

  29. Van de Velde S, Hogan MF, Montminy M (2011) mTOR links incretin signaling to HIF induction in pancreatic β cells. Proc Natl Acad Sci USA 108:16876–16882

    PubMed Central  PubMed  Google Scholar 

  30. Eberhard CE, Fu A, Reeks C, Screaton RA (2013) CRTC2 is required for β-cell function and proliferation. Endocrinology 154:2308–2317

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Raju Gottumukkala for his comments and Charles Wohlenberg for technical help. This research was supported by the Intramural Research Program of the NIH.

Conflict of interest

The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work.

Ethical standard

All studies were performed according to NIH guidelines.

Human and animal rights disclosure

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed consent disclosure

Informed consent was obtained from all participants prior to inclusion in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abner L. Notkins.

Additional information

Managed by Massimo Porta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 89 kb)

Supplementary material 2 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, T., Hirai, H., Xu, H. et al. The minimal promoter region of the dense-core vesicle protein IA-2: transcriptional regulation by CREB. Acta Diabetol 52, 573–580 (2015). https://doi.org/10.1007/s00592-014-0689-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-014-0689-5

Keywords

Navigation