Skip to main content
Log in

Relationship between the different torsion-related thoracic deformity parameters of adolescent idiopathic scoliosis

  • Original Article • SPINE - SCOLIOSIS
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Introduction

Torsion has recently become essential in curve evaluation, not only to assess the degree of clinical deformity that can influence decision making, but also to predict curve progression. Since torsion cannot be currently measured using plain X-rays, our aim was to study the relationships between the different torsion-related parameters measured on 2D radiographs that can indirectly guide the clinician about the torsion of a given curve.

Methods

This is a cross-sectional study analyzing prospectively registered data of a consecutive cohort of 113 AIS patients with progressive main thoracic deformity. Demographic data, the Adams test and eight radiographic torsion-related coronal and sagittal deformity parameters [apical vertebral rotation (AVR)—Stokes method, Mehta angle (RVAD), main thoracic Cobb side-bending, T5–T12 kyphosis, T5–T8 kyphosis, T9–T12 kyphosis, kyphotic change and double rib contour sign (rib index)] were correlated between each other and with the main thoracic Cobb angle (MTCobb). Univariate linear regression and multiple linear stepwise regression analyses were performed as well.

Results

The radiographically measurable deformity parameters that best correlated with the MTCobb angle in idiopathic curves were: side-bending, RVAD, AVR and the Adams test. Sagittal variables were correlated the least with MTCobb. Coronal parameters as AVR, RVAD, side-bending and Adam test are highly intercorrelated. Sagittal variables are related between each other but are not directly related to coronal parameters.

Conclusions

There is a strong relationship between the Cobb angle, curve bending, the Mehta angle and the apical vertebral rotation. Together with the clinical Adams test, these are the most important radiographic torsion-related parameters to measure when assessing scoliosis in 2D.

Level of evidence

3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dubousset J (1994) Three-dimensional analysis of the scoliotic deformity. In: Weinstein SL (ed) The pediatric spine: principles and practice. Raven Press, Ltd, New York, pp 479–496

    Google Scholar 

  2. Asher MA, Burton DC (1999) A concept of idiopathic scoliosis deformities as imperfect torsion(s). Clin Orthop Relat Res 364:11–25

    Article  PubMed  Google Scholar 

  3. Courvoisier A, Drevelle X, Dubousset J, Skalli W (2013) Transverse plane 3D analysis of mild scoliosis. Eur Spine J 22(11):2427–2432. doi:10.1007/s00586-013-2862-x

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nault ML, Mac-Thiong JM, Roy-Beaudry M, Turgeon I, Deguise J, Labelle H, Parent S (2014) Three-dimensional spinal morphology can differentiate between progressive and nonprogressive patients with adolescent idiopathic scoliosis at the initial presentation. Spine 39(10):E601–E606. doi:10.1097/BRS.0000000000000284

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lonstein JE, Carlson JM (1984) The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg Am 66(7):1061–1071

    CAS  PubMed  Google Scholar 

  6. Sanders JO, Khoury JG, Kishan S et al (2008) Predicting scoliosis progression from skeletal maturity: a simplified classification during adolescence. J Bone Joint Surg Am 90(3):540–553. doi:10.2106/JBJS.G.00004

    Article  PubMed  Google Scholar 

  7. Dubousset J, Charpak G, Skalli W, Kalifa G, Lazennec JY (2007) EOS stereo-radiography system: whole-body simultaneous anteroposterior and lateral radiographs with very low radiation dose. Rev Chir Orthop Reparatrice Appar Mot 93(Suppl6):141–143

    Article  CAS  PubMed  Google Scholar 

  8. Stokes IA, Bigalow LC, Moreland MS (1986) Measurement of axial rotation of vertebrae in scoliosis. Spine 11(3):213–218. doi:10.1097/00007632-198604000-00006

    Article  CAS  PubMed  Google Scholar 

  9. Mehta MH (1972) The rib-vertebra angle in the early diagnosis between resolving and progressive infantile scoliosis. J Bone Joint Surg Br 54(2):230–243

    CAS  PubMed  Google Scholar 

  10. Grivas TB, Dangas S, Polyzois BD, Samelis P (2002) The double rib contour sign (DRCS) in lateral spinal radiographs: aetiologic implications for scoliosis. Stud Health Technol Inform 88:38–43

    PubMed  Google Scholar 

  11. Perdriolle R, Vidal J (1987) Morphology of scoliosis: three-dimensional evolution. Orthopedics 10(6):909–915

    CAS  PubMed  Google Scholar 

  12. Kuklo TR, Potter BK, Lenke LG (2005) Vertebral Rotation and thoracic torsion in adolescent idiopathic scoliosis. J Spinal Disord Tech 18(2):139–147. doi:10.1097/01.bsd.0000159033.89623.bc

    Article  PubMed  Google Scholar 

  13. Modi HN, Suh SW, Song HR, Yang JH, Ting C, Hazra S (2009) Drooping of apical convex rib-vertebral angle in adolescent idiopathic scoliosis of more than 40 degrees: a prognostic factor for progression. J Spinal Disord Tech 22(5):367–371. doi:10.1097/BSD.0b013e3181836a8a

    Article  PubMed  Google Scholar 

  14. Stokes IA (1989) Axial rotation component of thoracic scoliosis. J Orthop Res 7(5):702–708. doi:10.1002/jor.1100070511

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Yang Y, Dang X, Zhao L, Ren J, Zhang L, Sun J (2014) Factors relating to curve progression in female patients with adolescent idiopathic scoliosis treated with a brace. Eur Spine J 24(2):244–248. doi:10.1007/s00586-014-3674-3

    Article  PubMed  Google Scholar 

  16. Thulbourne T, Gillespie R (1976) The rib hump in idiopathic scoliosis. measurement, analysis and response to treatment. J Bone Joint Surg Br 58(1):64–71

    CAS  PubMed  Google Scholar 

  17. Erkula G, Sponseller P, Kiter A (2003) Rib deformity in scoliosis. Eur Spine J 12:281–287

    PubMed  PubMed Central  Google Scholar 

  18. Mao S-H, Qiu Y, Zhu Z-Z et al (2012) Clinical evaluation of the anterior chest wall deformity in thoracic adolescent idiopathic scoliosis. Spine 37(9):E540–E548. doi:10.1097/BRS.0b013e31823a05e6

    Article  PubMed  Google Scholar 

  19. Hong J-Y, Suh S-W, Easwar TR et al (2011) Evaluation of the three-dimensional deformities in scoliosis surgery with computed tomography: efficacy and relationship with clinical outcomes. Spine 36(19):E1259–E1265. doi:10.1097/BRS.0b013e318205e413

    Article  PubMed  Google Scholar 

  20. Carlson BB, Burton DC, Asher MA (2013) Comparison of trunk and spine deformity in adolescent idiopathic scoliosis. Scoliosis 8(1):2. doi:10.1186/1748-7161-8-2

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sevastik B, Xiong B, Sevastik J et al (1997) Rib-vertebral angle asymmetry in idiopathic, neuromuscular and experimentally induced scoliosis. Eur Spine J 6(2):84–88. doi:10.1007/BF01358737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grivas TB, Vasiliadis ES, Mihas C, Savvidou O (2007) The effect of growth on the correlation between the spinal and rib cage deformity: implications on idiopathic scoliosis pathogenesis. Scoliosis 2:11. doi:10.1186/1748-7161-2-11

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hu P, Yu M, Liu X et al (2015) Analysis of the relationship between coronal and sagittal deformities in adolescent idiopathic scoliosis. Eur Spine J. doi:10.1007/s00586-015-3986-y

    Google Scholar 

  24. Dickson RA, Lawton JO, Archer IA, Butt WP (1984) The pathogenesis of idiopathic scoliosis. Biplanar spinal asymmetry. J Bone Joint Surg Br 66(1):8–15

    CAS  PubMed  Google Scholar 

  25. du Peloux J, Fauchet R, Faucon B, Stagnara P (1965) The plan of choice for the radiologic examination of kyphoscolioses. Rev Chir Orthop Reparatrice Appar Mot 51(6):517–524

    PubMed  Google Scholar 

  26. Hayashi K, Upasani VV, Pawelek JB, Aubin CE, Labelle H, Lenke LG, Jackson R, Newton PO (2009) Three-dimensional analysis of thoracic apical sagittal alignment in adolescent idiopathic scoliosis. Spine 34(8):792–797. doi:10.1097/BRS.0b013e31818e2c36

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Pizones.

Ethics declarations

Conflict of interest

All of the authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

This study has IRB approval/Research Ethics Committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pizones, J., Zúñiga, L., Sánchez-Mariscal, F. et al. Relationship between the different torsion-related thoracic deformity parameters of adolescent idiopathic scoliosis. Eur J Orthop Surg Traumatol 26, 763–769 (2016). https://doi.org/10.1007/s00590-016-1762-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-016-1762-2

Keywords

Navigation