Skip to main content
Log in

Unexpected positive culture (UPC) in adults revision spine surgery: a systematic review and meta-analysis of incidence, risk factors, and management

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Background

Without clear signs of infection, spinal implant failure is attributed to mechanical overloads and aseptic loosening. However, how low-grade infections contribute to seemingly aseptic implant failure is unclear.

Purpose

The systematic review examined unexpected positive cultures (UPCs) in revision spine surgery regarding prevalence, isolated pathogens, risk factors, and strategies to reduce infection among asymptomatic patients undergoing revision spine surgery.

Methods

We followed the PRISMA guidelines and searched four main databases (PubMed, EMBASE, SCOPUS, Web of Science) comprehensively until January 2023 for articles reporting UPC after presumed aseptic adult revision spine surgery. The UPC rates were pooled, and risk factors were compared with the culture-negative control group and represented as odds ratio (OR) or mean difference (MD).

Results

Fifteen studies of 1057 individuals were included in two groups: culture-positive or UPCs (n = 317) and culture-negative or control (n = 740). The overall UPC prevalence was 33.2% (317/1057, range: 0 to 53%, 95% CI = 30.2%–36.4%), and Cutibacterium acnes (43.0%, 95% CI = 37.4%–48.8%), Coagulase-negative Staphylococci (CoNS), (39.5%, 95% CI = 33.2%–46.2%), and Staphylococcus species in general (49.5%, 95%CI = 43.7%–55.4%) were reported the most common isolated microbes. 16.1% of the UPCs were polymicrobial. Risk factors associated with UPC rates were female sex (OR = 2.62, 95%CI = 1.76–3.90, P < 0.001), screw loosening (OR = 4.43, 95%CI = 1.31–15.02, P = 0.02), number of operated levels (MD = 0.77, 95%CI = 0.33–1.22, P = 0.0007), and shorter time since index surgery (MD = − 8.57 months, 95%CI = − 14.76, -2.39, P = 0.02).

Conclusions

One-third of patients undergoing spine revision surgery revealed UPC in this study. Each UPC pathogen interpretation and antibiotic use decision should be interpreted case by case.

Level of evidence: IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Mok JM, Cloyd JM, Bradford DS, Hu SS, Deviren V, Smith JA et al (2009) Reoperation after primary fusion for adult spinal deformity: rate, reason, and timing. Spine 34(8):832–839

    Article  PubMed  Google Scholar 

  2. Pichelmann MA, Lenke LG, Bridwell KH, Good CR, O’Leary PT, Sides BA (2010) Revision rates following primary adult spinal deformity surgery: six hundred forty-three consecutive patients followed-up to twenty-two years postoperative. Spine 35(2):219–226

    Article  PubMed  Google Scholar 

  3. Zhu F, Bao H, Liu Z, Bentley M, Zhu Z, Ding Y et al (2014) Unanticipated revision surgery in adult spinal deformity: an experience with 815 cases at one institution. Spine 39(26B):B36–B44

    Article  PubMed  Google Scholar 

  4. Dapunt U, Bürkle C, Günther F, Pepke W, Hemmer S, Akbar M (2017) Surgical site infections following instrumented stabilization of the spine. Ther Clin Risk Manag 13:1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lewkonia P, DiPaola C, Street J (2016) Incidence and risk of delayed surgical site infection following instrumented lumbar spine fusion. J Clin Neurosci 23:76–80

    Article  PubMed  Google Scholar 

  6. Kelly MP, Lenke LG, Bridwell KH, Agarwal R, Godzik J, Koester L (2013) The fate of the adult revision spinal deformity patient: a single institution experience. Spine 38(19):E1196

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yilgor C, Sogunmez N, Yavuz Y, Boissiere L, Obeid I, Acaroglu E et al (2017) Global alignment and proportion (GAP) score: development and validation of a new method of analyzing spinopelvic alignment to predict mechanical complications after adult spinal deformity surgery. Spine J 17(10):S155–S156

    Article  Google Scholar 

  8. Trampuz A, Piper KE, Jacobson MJ, Hanssen AD, Unni KK, Osmon DR et al (2007) Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med 357(7):654–663

    Article  CAS  PubMed  Google Scholar 

  9. Pumberger M, Bürger J, Strube P, Akgün D, Putzier M (2019) Unexpected positive cultures in presumed aseptic revision spine surgery using sonication. Bone Joint J. 101-b(5):621–624

    Article  CAS  PubMed  Google Scholar 

  10. Saleh A, Guirguis A, Klika AK, Johnson L, Higuera CA, Barsoum WK (2014) Unexpected positive intraoperative cultures in aseptic revision arthroplasty. J Arthroplasty 29(11):2181–2186

    Article  PubMed  Google Scholar 

  11. Bongers J, Jacobs AM, Smulders K, Goosen JH (2020) Reinfection and re-revision rates of 113 two-stage revisions in infected TKA. J Bone Joint Infect 5(3):137–144

    Article  Google Scholar 

  12. Di Benedetto P, Dalla Vecchia G, Dante F, Gisonni R, Cainero V, Causero A (2019) Leukocyte esterase strip test as a reliable intraoperative PJIs biomarker. Our experience. Acta Bio Medica Atenei Parmensis. 90(Suppl 12):43

    PubMed  PubMed Central  Google Scholar 

  13. Portillo ME, Salvadó M, Alier A, Sorli L, Martínez S, Horcajada JP et al (2013) Prosthesis failure within 2 years of implantation is highly predictive of infection. Clin Orthop Related Res. 471(11):3672–3678

    Article  Google Scholar 

  14. Rasouli MR, Harandi AA, Adeli B, Purtill JJ, Parvizi J (2012) Revision total knee arthroplasty: infection should be ruled out in all cases. J Arthroplasty 27(6):1239-1243.e2

    Article  PubMed  Google Scholar 

  15. Tubb CC, Polkowksi GG, Krause B (2020) Diagnosis and prevention of periprosthetic joint infections. JAAOS-J Am Acad Orthop Surg 28(8):e340–e348

    Article  Google Scholar 

  16. van den Kieboom J, Tirumala V, Box H, Oganesyan R, Klemt C, Kwon Y-M (2021) One-stage revision is as effective as two-stage revision for chronic culture-negative periprosthetic joint infection after total hip and knee arthroplasty: a retrospective cohort study. Bone Joint J 103(3):515–521

    Article  PubMed  Google Scholar 

  17. Del Pozo JL, Patel R (2009) Infection associated with prosthetic joints. N Engl J Med 361(8):787–794

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marculescu C, Berbari E, Hanssen A, Steckelberg J, Osmon DR (2005) Prosthetic joint infection diagnosed postoperatively by intraoperative culture. Clin Orthop Related Res 439:38–42

    Article  CAS  Google Scholar 

  19. Moojen DJF, van Hellemondt G, Vogely HC, Burger BJ, Walenkamp GH, Tulp NJ et al (2010) Incidence of low-grade infection in aseptic loosening of total hip arthroplasty: a prospective multicenter study using extensive routine and broad-range 16S PCR with reverse line blot diagnostics. Acta Orthop 81(6):667–673

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ribera A, Morata L, Moranas J, Agulló J, Martínez J, Lopez Y et al (2014) Clinical and microbiological findings in prosthetic joint replacement due to aseptic loosening. J Infect 69(3):235–243

    Article  CAS  PubMed  Google Scholar 

  21. Chaichana KL, Bydon M, Santiago-Dieppa DR, Hwang L, McLoughlin G, Sciubba DM et al (2014) Risk of infection following posterior instrumented lumbar fusion for degenerative spine disease in 817 consecutive cases. J Neurosurg Spine 20(1):45–52

    Article  PubMed  Google Scholar 

  22. Kasliwal MK, Tan LA, Traynelis VC (2013) Infection with spinal instrumentation: review of pathogenesis, diagnosis, prevention, and management. Surg Neurol Int 4(Suppl 5):S392

    PubMed  PubMed Central  Google Scholar 

  23. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 350:g7647

    Article  PubMed  Google Scholar 

  24. Howick J, Chalmers I, Glasziou P, Greenhalgh T, Heneghan C, Liberati A, Moschetti I, Phillips B, Thornton H (2011). The 2011 Oxford CEBM Levels of Evidence (Introductory Document). Oxford Centre for Evidence-Based Medicine. https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence

  25. Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558

    Article  PubMed  Google Scholar 

  26. Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ et al (2019) Cochrane handbook for systematic reviews of interventions. Wiley, New York

    Book  Google Scholar 

  27. Hu X, Lieberman IH (2018) Revision spine surgery in patients without clinical signs of infection: how often are there occult infections in removed hardware? Eur Spine J 27(10):2491–2495

    Article  PubMed  Google Scholar 

  28. Shiban E, Joerger AK, Janssen I, Issa M, Lange N, Wagner A et al (2020) Low-grade infection and implant failure following spinal instrumentation: a prospective comparative study. Neurosurgery 87(5):964–970

    Article  PubMed  Google Scholar 

  29. Leitner L, Malaj I, Sadoghi P, Amerstorfer F, Glehr M, Vander K et al (2018) Pedicle screw loosening is correlated to chronic subclinical deep implant infection: a retrospective database analysis. Eur Spine J 27(10):2529–2535

    Article  PubMed  Google Scholar 

  30. Ohrt-Nissen S, Fritz B, Valentin L, Kragh KN, Manniche C, Dahl B et al (2019) Is pseudarthrosis after spinal instrumentation caused by a chronic infection? Eur Spine J 28(12):2996–3002

    Article  PubMed  Google Scholar 

  31. Prinz V, Bayerl S, Renz N, Trampuz A, Czabanka M, Woitzik J et al (2019) High frequency of low-virulent microorganisms detected by sonication of pedicle screws: a potential cause for implant failure. J Neurosurg Spine 31(3):424–429

    Article  PubMed  Google Scholar 

  32. Siller S, Skrap B, Grabein B, Trabold R, Zausinger S, Tonn JC (2022) Routine intraoperative microbiological smear testing in patients with reoperation after elective degenerative non-instrumented spine surgery-useful or negligible adjunct. Acta Neurochir (Wien) 164(3):891–901

    Article  PubMed  Google Scholar 

  33. Agarwal A, Mooney M, Agarwal AG, Jayaswal D, Saakyan G, Goel V et al (2020) High prevalence of biofilms on retrieved implants from aseptic pseudarthrosis cases. Spine Surg Relat Res 5(2):104–108

    Article  PubMed  PubMed Central  Google Scholar 

  34. Burkhard MD, Loretz R, Uçkay I, Bauer DE, Betz M, Farshad M (2021) Occult infection in pseudarthrosis revision after spinal fusion. Spine J 21(3):370–376

    Article  PubMed  Google Scholar 

  35. Dupré DA, Cheng B, Kreft R, Nistico L, Ehrlich GD, Averick S et al (2022) The presence of biofilms in instrumented spinal fusions. Genet Test Mol Biomarkers 26(7–8):375–381

    Article  PubMed  Google Scholar 

  36. Shifflett GD, Bjerke-Kroll BT, Nwachukwu BU, Kueper J, Burket J, Sama AA et al (2016) Microbiologic profile of infections in presumed aseptic revision spine surgery. Eur Spine J 25(12):3902–3907

    Article  PubMed  Google Scholar 

  37. Burkhard MD, Hassanzadeh A, Andronic O, Götschi T, Uçkay I, Farshad M (2022) Clinical relevance of occult infections in spinal pseudarthrosis revision. N Am Spine Soc J (NASSJ) 12:100172

    Article  PubMed  Google Scholar 

  38. García-Pérez D, Lagares A, Castaño-León AM, Panero I, Munarriz PM, Delgado-Fernández J et al (2021) Implant microbial colonization detected by sonication as a cause for spinal device failure: a prospective study. Spine 46(21):1485–1494

    Article  PubMed  Google Scholar 

  39. Steinhaus ME, Salzmann SN, Lovecchio F, Shifflett GD, Yang J, Kueper J et al (2019) Risk factors for positive cultures in presumed aseptic revision spine surgery. Spine 44(3):177–184

    Article  PubMed  Google Scholar 

  40. Burkhard MD, Hassanzadeh A, Andronic O, Götschi T, Uçkay I, Farshad M (2022) Clinical relevance of occult infections in spinal pseudarthrosis revision. N Am Spine Soc J (NASSJ). 12:100172

    Article  PubMed  PubMed Central  Google Scholar 

  41. Callanan TC, Abjornson C, DiCarlo E, Henry M, Sama AA, Girardi FP et al (2021) Prevalence of occult infections in posterior instrumented spinal fusion. Clin Spine Surg 34(1):25–31

    Article  PubMed  Google Scholar 

  42. Richards BS (1995) Delayed infections following posterior spinal instrumentation for the treatment of idiopathic scoliosis. J Bone Joint Surg Am 77(4):524–529

    Article  CAS  PubMed  Google Scholar 

  43. Updegrove GF, Armstrong AD, Kim HM (2015) Preoperative and intraoperative infection workup in apparently aseptic revision shoulder arthroplasty. J Shoulder Elbow Surg 24(3):491–500

    Article  PubMed  Google Scholar 

  44. Purudappa PP, Sharma OP, Priyavadana S, Sambandam S, Villafuerte JA (2020) Unexpected positive intraoperative cultures (UPIC) in revision Hip and knee arthroplasty—a review of the literature. J Orthop 17:1–6

    Article  PubMed  Google Scholar 

  45. Hodakowski AJ, Cohn MR, Mehta N, Menendez ME, McCormick JR, Garrigues GE (2022) An evidence-based approach to managing unexpected positive cultures in shoulder arthroplasty. J Shoulder Elbow Surg 31(10):2176–2186

    Article  PubMed  Google Scholar 

  46. Kim SJ, Kim JH (2014) Unexpected positive cultures including isolation of Propionibacterium acnes in revision shoulder arthroplasty. Chin Med J (Engl) 127(22):3975–3979

    Article  PubMed  Google Scholar 

  47. Kloos J, Vander Linden K, Vermote S, Berger P, Vandenneucker H (2022) Prevalence, interpretation, and management of unexpected positive cultures in revision TKA: a systematic review. Knee Surg Sports Traumatol Arthrosc 30(12):3998–4009

    Article  PubMed  Google Scholar 

  48. Levy O, Iyer S, Atoun E, Peter N, Hous N, Cash D et al (2013) Propionibacterium acnes: an underestimated etiology in the pathogenesis of osteoarthritis? J Shoulder Elbow Surg 22(4):505–511

    Article  PubMed  Google Scholar 

  49. Kempthorne JT, Ailabouni R, Raniga S, Hammer D, Hooper G (2015) Occult infection in aseptic joint loosening and the diagnostic role of implant sonication. Biomed Res Int 2015:946215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhai Z, Li H, Qin A, Liu G, Liu X, Wu C et al (2014) Meta-analysis of sonication fluid samples from prosthetic components for diagnosis of infection after total joint arthroplasty. J Clin Microbiol 52(5):1730–1736

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sampedro MF, Huddleston PM, Piper KE, Karau MJ, Dekutoski MB, Yaszemski MJ et al (2010) A biofilm approach to detect bacteria on removed spinal implants. Spine 35(12):1218–1224

    Article  PubMed  Google Scholar 

  52. Nelson CL, McLaren AC, McLaren SG, Johnson JW, Smeltzer MS (2005) Is aseptic loosening truly aseptic? Clin Orthop Relat Res 437:25–30

    Article  Google Scholar 

  53. Agarwal A, Mooney M, Agarwal AG, Jayaswal D, Saakyan G, Goel V et al (2021) High prevalence of biofilms on retrieved implants from aseptic pseudarthrosis cases. Spine Surg Relat Res 5(2):104–108

    Article  PubMed  Google Scholar 

  54. Uçkay I, Dinh A, Vauthey L, Asseray N, Passuti N, Rottman M et al (2010) Spondylodiscitis due to Propionibacterium acnes: report of twenty-nine cases and a review of the literature. Clin Microbiol Infect 16(4):353–358

    Article  PubMed  Google Scholar 

  55. Bémer P, Corvec S, Tariel S, Asseray N, Boutoille D, Langlois C et al (2008) Significance of Propionibacterium acnes-positive samples in spinal instrumentation. Spine 33(26):E971–E976

    Article  PubMed  Google Scholar 

  56. Chahoud J, Kanafani Z, Kanj S (2014) Surgical Site infections following spine surgery: eliminating the controversies in the diagnosis. Front Med 1:7

    Article  Google Scholar 

Download references

Acknowledgements

None.

Funding

There is no funding source for authors to declare.

Author information

Authors and Affiliations

Authors

Contributions

PM introduced the concept, analyzed the data, wrote the manuscript, and edited the final draft. AJ and HG contributed to the screening, material preparation, data extraction, and writing the first manuscript. MADO contributed to the search strategy, designed tables and figures, and edited the manuscript. Supervising, editing, and finalizing the manuscript was performed by PM., NE contributed to the study conceptualization, manuscript revision and response to reviewer’s comment. All authors commented on previous versions of the manuscript and revised it. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Peyman Mirghaderi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: All isolated microorganisms (N, %)

Appendix 1: All isolated microorganisms (N, %)

Study

Pooled rate and 95%CI

Shifflett 2016

Steinhaus 2019

Hu 2018

Pumberger 2019

Shiban 2020

Agarwal 2021

Burkhard 2021

Burkhard 2022

Callanan 2021(9)

García-Pérez 2021

Dupre´ 2022

Ohrt-Nissen

Prinz

Leitner

Siller et al

UPIC/ Negative culture

 

45/67 (40%)

15/147 (9%)

75/91 (45%)

25/35 (41%)

7/3 (70%)

13/115 (10%)

33/17 (66%)

11/27 (28%)

5/6 (45%)

17/15

(53%)

22/60

(26%)

32/78

(29%)

8/53

(15%)

Species

              

Coagulase-negative staphylococci (CoNS)

101/308 (40.8%) (34.6%–47.3%)

5/45

(11%)

6/15

(40%)

35/75

(47%)

  

5/13

(3.9%)

9/33

(27%)

5/11

(47%)

 

4/17

(23%)

15/22

(68%)

17/32

(53%)

 

Cutibacterium acnes

129/308 (43.1%; 37.5- 48.8%)

22/45 (49%)

7/15

(46%)

34/75

(45%)

9/25

(36%)

 

6 /13

(4.7%)

12/33

(36%)

3/11

(25%)

3/5

(60%)

9/17

(52%)

6/22

(27%)

13/32

(40%)

5/8

(62%)

Staphylococcus epidermidis

46/308 (27%; 20.8–34.2%)

1/45

(2%)

 

23/75

(31%)

7/25

(28%)

 

4 /13

(3.1%)

  

1/5

(20%)

  

7/32

(21%)

3/8

(37%)

Staphylococcus capitis

8/308 (6.1%; 3.1%-11.8%)

  

4/75

(5%)

2/25

(8%)

       

1/32

(6%)

1/8

(12%)

Staphylococcus hominis

5/308 (4.8%; 2- 11%)

  

3/75

(4%)

        

2/32

(12%)

 

Staphylococcus haemolyticus

2/308 (2.7%; 0.7- 1%)

  

2/75

(3%)

          

Staphylococcus cohnii

2/308 (2.7%; 0.7–1%)

  

2/75

(3%)

          

Staphylococcus warneri

1/308 (1.3%; 0.2–8.9%)

  

1/75

(1%)

          

Staphylococcus lugdunensis

6/308 (4.8%; 2.1–10.2%)

3/45

(6%)

 

1/75

(1%)

1/25

(4%)

 

1 /13

(0.8%)

       

Staphylococcus saccharolyticus

8/308 (6.2%; 3.1–12%)

1/45

(2%)

 

1/75

(1%)

   

4/33

(12%)

   

2/32

(12%)

 

Staphylococcus aureus

5/308 (6.5%; 2.7–14.7%)

  

2/75

(3%)

3/25

(12%)

         

oxacillin-sensitive Staphylococcus aureus

7/308 (15.6%)(7.6%–29.2%)

7/45

(15%)

            

Streptococcus Viridans

2/308 (4.4%)(1.1%–16.1%)

2/45 (4.4%)

            

Proteus mirabilis

1/308 (2.2%)(0.3%–14.2%)

1/45

(2%)

            

Methicillin-resistant Staphylococcus epidermidis

4/308 (8.9%)(3.4%–21.4%)

4/45

(9%)

            

Methicillin-sensitive Staphylococcus epidermidis

4/308 (8.9%)(3.4%–21.4%)

4/45

(9%)

            

Methicillin-resistant Staphylococcus aureus

4/308 (5.9%; 2.2–14.6%)

3/45

(6%)

  

1/25

(4%)

         

E. Coli

5/308 (7.2%; 3–16.1%)

3/45

(6%)

  

2/25

(8%)

         

Diphtheroids

3/308 (6.7%; 2.2–18.7%)

3/45

(6%)

            

Pseudomonas aeruginosa

1/308 (6.7%; 0.9–35.2%)

 

1/15

(6%)

           

Polymicrobial

10/308 (13.3%; 7.3–23%)

  

10/75

(13%)

          

Corynebact confusum

1/308 (4%; 0.6–23.5%)

   

1/25

(4%)

         

E. faecalis

3/308 (9.6%; 3.1–26.2%)

   

1/25

(4%)

 

2 /13

(1.6%)

       

Finegoldia magna

1/308 (4%; 0.6–23.5%)

   

1/25

(4%)

         

Pseudomonas chlororaphis

1/308 (4%; 0.6–23.5%)

   

1/25

(4%)

         

Achromobacter spp.

1/308 (4%; 0.6–23.5%)

   

1/25

(4%)

         

Kalbesila pneumonia

1/308 (3%; 0.4–18.6%)

      

1/33

(3%)

      

Trueperella bernardia

1/308 (3%; 0.4–18.6%)

      

1/33

(3%)

      

Roseomonas mucosa

1/308 (20%; 2.7–69.1%)

        

1/5

(20%)

    

Enterococcus faecalis

1/308 (4.5%; 0.6–26.1%)

          

1/22

(4%)

  

Bacillus circulans

1/308 (12.5%; 1.7–53.7%)

            

1/8

(12%)

Propionibacterium avidum

1/308

(5.9%; 0.8–32%)

         

1/17

(5%)

   

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirghaderi, P., Gholamshahi, H., Jahromi, A. et al. Unexpected positive culture (UPC) in adults revision spine surgery: a systematic review and meta-analysis of incidence, risk factors, and management. Eur Spine J (2024). https://doi.org/10.1007/s00586-024-08229-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00586-024-08229-2

Keywords

Navigation