Skip to main content

Advertisement

Log in

Novel 3D printable PEEK-HA-Mg2SiO4 composite material for spine implants: biocompatibility and imaging compatibility assessments

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To develop a novel 3D printable polyether ether ketone (PEEK)-hydroxyapatite (HA)-magnesium orthosilicate (Mg2SiO4) composite material with enhanced properties for potential use in tumour, osteoporosis and other spinal conditions. We aim to evaluate biocompatibility and imaging compatibility of the material.

Methods

Materials were prepared in three different compositions, namely composite A: 75 weight % PEEK, 20 weight % HA, 5 weight % Mg2SiO4; composite B: 70 weight% PEEK, 25 weight % HA, 5 weight % Mg2SiO4; and composite C: 65 weight % PEEK, 30 weight % HA, 5 weight % Mg2SiO4. The materials were processed to obtain 3D printable filament. Biomechanical properties were analysed as per ASTM standards and biocompatibility of the novel material was evaluated using indirect and direct cell cytotoxicity tests. Cell viability of the novel material was compared to PEEK and PEEK-HA materials. The novel material was used to 3D print a standard spine cage. Furthermore, the CT and MR imaging compatibility of the novel material cage vs PEEK and PEEK-HA cages were evaluated using a phantom setup.

Results

Composite A resulted in optimal material processing to obtain a 3D printable filament, while composite B and C resulted in non-optimal processing. Composite A enhanced cell viability up to ~ 20% compared to PEEK and PEEK-HA materials. Composite A cage generated minimal/no artefacts on CT and MR imaging and the images were comparable to that of PEEK and PEEK-HA cages.

Conclusion

Composite A demonstrated superior bioactivity vs PEEK and PEEK-HA materials and comparable imaging compatibility vs PEEK and PEEK-HA. Therefore, our material displays an excellent potential to manufacture spine implants with enhanced mechanical and bioactive property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Kumar N, Alathur Ramakrishnan S, Lopez KG, Madhu S, Ramos MRD, Fuh JYH, Hallinan J, Nolan CP, Benneker LM, Vellayappan BA (2021) Can polyether ether ketone dethrone titanium as the choice implant material for metastatic spine tumor surgery? World Neurosurg 148:94–109. https://doi.org/10.1016/j.wneu.2021.01.059

    Article  PubMed  Google Scholar 

  2. Kumar N, Lopez KG, Alathur Ramakrishnan S, Hallinan J, Fuh JYH, Pandita N, Madhu S, Kumar A, Benneker LM, Vellayappan BA (2021) Evolution of materials for implants in metastatic spine disease till date-have we found an ideal material? Radiother Oncol 163:93–104. https://doi.org/10.1016/j.radonc.2021.08.007

    Article  PubMed  Google Scholar 

  3. Kumar N, Patel R, Wadhwa AC, Kumar A, Milavec HM, Sonawane D, Singh G, Benneker LM (2018) Basic concepts in metal work failure after metastatic spine tumour surgery. Eur Spine J 27:806–814. https://doi.org/10.1007/s00586-017-5405-z

    Article  PubMed  Google Scholar 

  4. Ma R, Guo D (2019) Evaluating the bioactivity of a hydroxyapatite-incorporated polyetheretherketone biocomposite. J Orthop Surg Res 14:32. https://doi.org/10.1186/s13018-019-1069-1

    Article  PubMed Central  PubMed  Google Scholar 

  5. Deng Y, Zhou P, Liu X, Wang L, Xiong X, Tang Z, Wei J, Wei S (2015) Preparation, characterization, cellular response and in vivo osseointegration of polyetheretherketone/nano-hydroxyapatite/carbon fiber ternary biocomposite. Colloids Surf B Biointerfaces 136:64–73. https://doi.org/10.1016/j.colsurfb.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  6. Ma R, Tang T (2014) Current strategies to improve the bioactivity of PEEK. Int J Mol Sci 15:5426–5445. https://doi.org/10.3390/ijms15045426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Gigante A, Setaro N, Rotini M, Finzi SS, Marinelli M (2018) Intercondylar eminence fracture treated by resorbable magnesium screws osteosynthesis: a case series. Injury 49(Suppl 3):S48-s53. https://doi.org/10.1016/j.injury.2018.09.055

    Article  PubMed  Google Scholar 

  8. Turan A, Kati YA, Acar B, Kose O (2020) Magnesium bioabsorbable screw fixation of radial styloid fractures: case report. J Wrist Surg 9:150–155. https://doi.org/10.1055/s-0039-1685489

    Article  PubMed  Google Scholar 

  9. Yu X, Ibrahim M, Liu Z, Yang H, Tan L, Yang K (2018) Biofunctional Mg coating on PEEK for improving bioactivity. Bioactive Mater 3:139–143. https://doi.org/10.1016/j.bioactmat.2018.01.007

    Article  Google Scholar 

  10. Sikder P, Ferreira JA, Fakhrabadi EA, Kantorski KZ, Liberatore MW, Bottino MC, Bhaduri SB (2020) Bioactive amorphous magnesium phosphate-polyetheretherketone composite filaments for 3D printing. Dent Mater 36:865–883. https://doi.org/10.1016/j.dental.2020.04.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kang YG, Wei J, Shin JW, Wu YR, Su J, Park YS, Shin JW (2018) Enhanced biocompatibility and osteogenic potential of mesoporous magnesium silicate/polycaprolactone/wheat protein composite scaffolds. Int J Nanomed 13:1107–1117. https://doi.org/10.2147/ijn.S157921

    Article  CAS  Google Scholar 

  12. Bavya Devi K, Nandi SK, Roy M (2019) Magnesium silicate bioceramics for bone regeneration: a review. J Indian Inst Sci 99:261–288. https://doi.org/10.1007/s41745-019-00119-7

    Article  Google Scholar 

  13. Revell P, Damien E, Zhang X, Evans P, Howlett C (2004) The effect of magnesium ions on bone bonding to hydroxyapatite coating on titanium alloy implants. In: Key engineering materials-KEY ENG MAT, vol 254, pp 447-450.https://doi.org/10.4028/www.scientific.net/KEM.254-256.447

  14. Shadanbaz S, Dias GJ (2012) Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater 8:20–30. https://doi.org/10.1016/j.actbio.2011.10.016

    Article  CAS  PubMed  Google Scholar 

  15. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734. https://doi.org/10.1016/j.biomaterials.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  16. Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M (2002) Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 62:175–184. https://doi.org/10.1002/jbm.10270

    Article  CAS  PubMed  Google Scholar 

  17. Henstock JR, Canham LT, Anderson SI (2015) Silicon: the evolution of its use in biomaterials. Acta Biomater 11:17–26. https://doi.org/10.1016/j.actbio.2014.09.025

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Schröder HC, Wiens M, Ushijima H, Müller WE (2012) Bio-silica and bio-polyphosphate: applications in biomedicine (bone formation). Curr Opin Biotechnol 23:570–578. https://doi.org/10.1016/j.copbio.2012.01.018

    Article  CAS  PubMed  Google Scholar 

  19. Wang N, Maskomani S, Meenashisundaram GK, Fuh JYH, Dheen ST, Anantharajan SK (2020) A study of titanium and magnesium particle-induced oxidative stress and toxicity to human osteoblasts. Mater Sci Eng C 117:111285. https://doi.org/10.1016/j.msec.2020.111285

    Article  CAS  Google Scholar 

  20. Kumar A, Yap WT, Foo SL, Lee TK (2018) Effects of sterilization cycles on PEEK for medical device application. Bioengineering 5:18. https://doi.org/10.3390/bioengineering5010018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Meenashisundaram GK, Wang N, Maskomani S, Lu S, Anantharajan SK, Dheen ST, Nai SML, Fuh JYH, Wei J (2020) Fabrication of Ti + Mg composites by three-dimensional printing of porous Ti and subsequent pressureless infiltration of biodegradable Mg. Mater Sci Eng C 108:110478. https://doi.org/10.1016/j.msec.2019.110478

    Article  CAS  Google Scholar 

  22. Krätzig T, Mende KC, Mohme M, Kniep H, Dreimann M, Stangenberg M, Westphal M, Gauer T, Eicker SO (2021) Carbon fiber–reinforced PEEK versus titanium implants: an in vitro comparison of susceptibility artifacts in CT and MR imaging. Neurosurg Rev 44:2163–2170. https://doi.org/10.1007/s10143-020-01384-2

    Article  PubMed  Google Scholar 

  23. Duan Q, Duyn JH, Gudino N, de Zwart JA, van Gelderen P, Sodickson DK, Brown R (2014) Characterization of a dielectric phantom for high-field magnetic resonance imaging applications. Med Phys 41:102303. https://doi.org/10.1118/1.4895823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Torstrick FB, Klosterhoff BS, Westerlund LE, Foley KT, Gochuico J, Lee CSD, Gall K, Safranski DL (2018) Impaction durability of porous polyether-ether-ketone (PEEK) and titanium-coated PEEK interbody fusion devices. Spine J 18:857–865. https://doi.org/10.1016/j.spinee.2018.01.003

    Article  PubMed  Google Scholar 

  25. Kienle A, Graf N, Wilke H-J (2016) Does impaction of titanium-coated interbody fusion cages into the disc space cause wear debris or delamination? Spine J 16:235–242. https://doi.org/10.1016/j.spinee.2015.09.038

    Article  PubMed  Google Scholar 

  26. Johansson P, Jimbo R, Kozai Y, Sakurai T, Kjellin P, Currie F, Wennerberg A (2015) Nanosized hydroxyapatite coating on PEEK implants enhances early bone formation: a histological and three-dimensional investigation in rabbit bone. Materials 8:3815–3830. https://doi.org/10.3390/ma8073815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Wang N, Meenashisundaram GK, Chang S, Fuh JYH, Dheen ST, Senthil Kumar A (2022) A comparative investigation on the mechanical properties and cytotoxicity of cubic, octet, and TPMS gyroid structures fabricated by selective laser melting of stainless steel 316L. J Mech Behav Biomed Mater 129:105151. https://doi.org/10.1016/j.jmbbm.2022.105151

    Article  CAS  PubMed  Google Scholar 

  28. Yoshizawa S, Brown A, Barchowsky A, Sfeir C (2014) Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater 10:2834–2842. https://doi.org/10.1016/j.actbio.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  29. Augustin J, Feichtner F, Waselau A-C, Julmi S, Klose C, Wriggers P, Maier HJ, Meyer-Lindenberg A (2022) Effect of pore size on tissue ingrowth and osteoconductivity in biodegradable Mg alloy scaffolds. J Appl Biomater Funct Mater 20:22808000221078170. https://doi.org/10.1177/22808000221078168

    Article  CAS  PubMed  Google Scholar 

  30. Wei X, Zhou W, Tang Z, Wu H, Liu Y, Dong H, Wang N, Huang H, Bao S, Shi L, Li X, Zheng Y, Guo Z (2023) Magnesium surface-activated 3D printed porous PEEK scaffolds for in vivo osseointegration by promoting angiogenesis and osteogenesis. Bioactive Mater 20:16–28. https://doi.org/10.1016/j.bioactmat.2022.05.011

    Article  CAS  Google Scholar 

  31. Xin-ye N, Xiao-bin T, Chang-ran G, Da C (2012) The prospect of carbon fiber implants in radiotherapy. J Appl Clin Med Phys 13:152–159. https://doi.org/10.1120/jacmp.v13i4.3821

    Article  PubMed Central  Google Scholar 

  32. Nevelsky A, Borzov E, Daniel S, Bar-Deroma R (2017) Perturbation effects of the carbon fiber-PEEK screws on radiotherapy dose distribution. J Appl Clin Med Phys 18:62–68. https://doi.org/10.1002/acm2.12046

    Article  PubMed Central  PubMed  Google Scholar 

  33. Chen Y, Wang X, Lu X, Yang L, Yang H, Yuan W, Chen D (2013) Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up. Eur Spine J 22:1539–1546. https://doi.org/10.1007/s00586-013-2772-y

    Article  PubMed Central  PubMed  Google Scholar 

  34. Zhu C, He M, Mao L, Li T, Zhang L, Liu L, Feng G, Song Y (2021) Titanium-interlayer mediated hydroxyapatite coating on polyetheretherketone: a prospective study in patients with single-level cervical degenerative disc disease. J Transl Med 19:14. https://doi.org/10.1186/s12967-020-02688-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Weber MH, Fortin M, Shen J, Tay B, Hu SS, Berven S, Burch S, Chou D, Ames C, Deviren V (2017) Graft subsidence and revision rates following anterior cervical corpectomy: a clinical study comparing different interbody cages. Clin Spine Surg 30:E1239–E1245. https://doi.org/10.1097/BSD.0000000000000428

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank—the Centre for Translational MR Research (NUS–TMR) for MR imaging service and the Clinical Imaging Research Centre (NUS–CIRC) for CT imaging service. The authors would like to thank the National University of Singapore Center for Additive Manufacturing (AM.NUS) for their technical support. The authors would also like to thank Mr. Ramruttun Amit Kumarsing for his assistance with biomechanical testing and Dr. Deepika Kandilya for her assistance with cell cytotoxicity testing. We would also like to thank Dr. Karthigesh Palanichami, Dr. Veluru Jagadeesh Babu, Dr. Pradnya Mohite & Laranya Kumar for their help in editing the manuscript.

Funding

This research/project (Grant No: 2019024) is supported by NAMIC Singapore, NUS Centre for Additive Manufacturing (AM.NUS) and funded by the National Research Foundation Singapore under its Innovation Cluster Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Kumar.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Alathur Ramakrishnan, S., Lopez, K.G. et al. Novel 3D printable PEEK-HA-Mg2SiO4 composite material for spine implants: biocompatibility and imaging compatibility assessments. Eur Spine J 32, 2255–2265 (2023). https://doi.org/10.1007/s00586-023-07734-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-023-07734-0

Keywords

Navigation