Skip to main content
Log in

Influence of posterior instrumented correction with pedicle screw dual rod systems on thoracic kyphosis in Lenke 1 and 2 curves: minimum 2 years follow-up

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Adolescent idiopathic scoliosis (AIS) often correspond with hypo thoracic kyphosis (TK) or even lordosis. The aim of this study was to analyze the influence of posterior instrumentation in thoracic AIS.

Methods

Analysis of prospectively collected AIS-data with structural thoracic curves (Lenke type 1 & 2), operated 2010–2019 with pedicle screw dual rod systems in one scoliosis center. Follow-up (FU) minimum 24 months. Coronal and sagittal angles measured based on standing long-cassette-X-rays: thoracic major (MC), proximal thoracic (PC) and lumbar curve (LC), TK, lumbar lordosis (LL). Statistical analysis: values as mean ± SD, differences by student’s t-test (significancy a = 0.05), Pearson’s correlation, sub-analysis with sagittal modifier (−, N, +).

Results

A total of 127 AIS could be identified (63% type 1, 37% type 2). Mean FU 32.2 ± 16.6 months, mean age 14 ± 1.5 years. Mean Correction of MC 73 ± 12%, PC 51 ± 17%, LC 69 ± 21% with a significantly better correction of PC in Lenke 2 curves(p < 0.05). On average, TK (FU-preop) decreased by -2.1 ± 12.1°(p < 0.05) in all AIS. Whereas TK in type 1 was unchanged (p = 0.9), TK significantly decreased by − 6.0 ± 12.7°(p < 0.05) in type 2. No significant difference in LL. TK in hypokyphotic cases increased by 9.5 ± 5.5°(p < 0.05), stayed almost unchanged (− 1.4 ± 9.1°,p = 0.2) in normokyphotic, decreased by − 17.2 ± 14.2°(p < 0.05) in hyperkyphotic cases. Only hypokyphotic cases had a moderately strong correlation between correction of LC (r = 0.6) and PC (r = − 0.4) (frontal plane) and change from pre- to postoperative TK (sagittal plane) (r = 0.6). No relevant correlations for normo- and hyperkyphotic AIS. Postoperative hypokyphosis was significantly more often in Lenke 2 (16.3% vs. 2.6%, p < 0.05). Rod diameter (5,5 mm versus 6 mm) had no significant influence.

Conclusion

Significant correction of hypo- and hyperkyphosis can be achieved with posterior spinal fusion (pedicle screw dual rod systems), whereas normokyphotic spines stay unchanged. However, Lenke 2 curves have a significantly higher risk for a postoperative thoracic hypokyphosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lenke L, Betz R, Clements D, Merola A, Haher T, Lowe T, Newton P, Bridwell KH, Blanke K (2002) Curve prevalence of a new classification of operative adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 27:604–611

    Article  PubMed  Google Scholar 

  2. Di Silvestre M, Bakaloudis G, Lolli F, Vommaro F, Martikos K, Parisini P (2008) Posterior fusion only for thoracic adolescent idiopathic scoliosis of more than 80°: pedicle screws versus hybrid instrumentation. Eur Spine J 17:1336–1349. https://doi.org/10.1007/s00586-008-0731-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kim YJ, Lenke LG, Cho SK, Bridwell KH, Sides B, Blanke K (2004) Comparative analysis of pedicle screw versus hook instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29:2040–2048. https://doi.org/10.1097/01.brs.0000138268.12324.1a

    Article  PubMed  Google Scholar 

  4. Rhee JM, Bridwell KH, Won DS, Lenke LG, Chotigavanichaya C, Hanson DS (2002) Sagittal plane analysis of adolescent idiopathic scoliosis: the effect of anterior versus posterior instrumentation. Spine (Phila Pa 1976) 27:2350–2356. https://doi.org/10.1097/00007632-200211010-00008

    Article  PubMed  Google Scholar 

  5. Bernstein P, Hentschel S, Platzek I, Hühne S, Ettrich U, Hartmann A, Seifert J (2014) Thoracal flat back is a risk factor for lumbar disc degeneration after scoliosis surgery. Spine J 14:925–932. https://doi.org/10.1016/j.spinee.2013.07.426

    Article  PubMed  Google Scholar 

  6. Newton PO, Faro FD, Gollogly S, Betz RR, Lenke LG, Lowe TG (2005) Results of preoperative pulmonary function testing of adolescents with idiopathic scoliosis. a study of six hundred and thirty-one patients. J Bone Joint Surg Am 87:1937–1946. https://doi.org/10.2106/jbjs.D.02209

    Article  PubMed  Google Scholar 

  7. Winter RB, Lovell WW, Moe JH (1975) Excessive thoracic lordosis and loss of pulmonary function in patients with idiopathic scoliosis. J Bone Joint Surg Am 57:972–977

    Article  CAS  PubMed  Google Scholar 

  8. Yaszay B, Bastrom TP, Bartley CE, Parent S, Newton PO (2017) The effects of the three-dimensional deformity of adolescent idiopathic scoliosis on pulmonary function. Eur Spine J 26:1658–1664. https://doi.org/10.1007/s00586-016-4694-y

    Article  PubMed  Google Scholar 

  9. Larson AN, Polly DW Jr, Diamond B, Ledonio C, Richards BS 3rd, Emans JB, Sucato DJ, Johnston CE (2014) Does higher anchor density result in increased curve correction and improved clinical outcomes in adolescent idiopathic scoliosis? Spine (Phila Pa 1976) 39:571–578. https://doi.org/10.1097/brs.0000000000000204

    Article  PubMed  Google Scholar 

  10. Liu H, Li Z, Li S, Zhang K, Yang H, Wang J, Li X, Zheng Z (2015) Main thoracic curve adolescent idiopathic scoliosis: association of higher rod stiffness and concave-side pedicle screw density with improvement in sagittal thoracic kyphosis restoration. J Neurosurg Spine 22:259–266. https://doi.org/10.3171/2014.10.Spine1496

    Article  PubMed  Google Scholar 

  11. Sudo H, Abe Y, Kokabu T, Ito M, Abumi K, Ito YM, Iwasaki N (2016) Correlation analysis between change in thoracic kyphosis and multilevel facetectomy and screw density in main thoracic adolescent idiopathic scoliosis surgery. Spine J 16:1049–1054. https://doi.org/10.1016/j.spinee.2016.04.014

    Article  PubMed  Google Scholar 

  12. Cidambi KR, Glaser DA, Bastrom TP, Nunn TN, Ono T, Newton PO (2012) Postoperative changes in spinal rod contour in adolescent idiopathic scoliosis: an in vivo deformation study. Spine (Phila Pa 1976) 37:1566–1572. https://doi.org/10.1097/BRS.0b013e318252ccbe

    Article  PubMed  Google Scholar 

  13. Ferrero E, Pesenti S, Blondel B, Jouve JL, Mazda K, Ilharreborde B (2014) Role of thoracoscopy for the sagittal correction of hypokyphotic adolescent idiopathic scoliosis patients. Eur Spine J 23:2635–2642. https://doi.org/10.1007/s00586-014-3566-6

    Article  CAS  PubMed  Google Scholar 

  14. Monazzam S, Newton PO, Bastrom TP, Yaszay B (2013) Multicenter comparison of the factors important in restoring thoracic kyphosis during posterior instrumentation for adolescent idiopathic scoliosis. Spine Deform 1:359–364. https://doi.org/10.1016/j.jspd.2013.06.002

    Article  PubMed  Google Scholar 

  15. Sudo H, Ito M, Abe Y, Abumi K, Takahata M, Nagahama K, Hiratsuka S, Kuroki K, Iwasaki N (2014) Surgical treatment of Lenke 1 thoracic adolescent idiopathic scoliosis with maintenance of kyphosis using the simultaneous double-rod rotation technique. Spine (Phil Pa 1976) 39:1163–1169. https://doi.org/10.1097/brs.0000000000000364

    Article  Google Scholar 

  16. Lee CS, Park S, Lee DH, Hwang CJ, Cho JH, Park JW, Park KB (2021) Is the combination of convex compression for the proximal thoracic curve and concave distraction for the main thoracic curve using separate-rod derotation effective for correcting shoulder balance and thoracic kyphosis? Clin Orthop Relat Res 479:1347–1356. https://doi.org/10.1097/corr.0000000000001643

    Article  PubMed  PubMed Central  Google Scholar 

  17. Berlin C, Quante M, Freifrau von Richthofen E, Halm H (2021) Analysis of preoperative and operative factors influencing postoperative shoulder imbalance in lenke type 1 adolescent idiopathic scoliosis. Z Orthop Unfall. https://doi.org/10.1055/a-1337-3435

    Article  PubMed  Google Scholar 

  18. Berlin C, Quante M, Thomsen B, Koszegvary M, Platz U, Halm H (2020) Intraoperative radiation exposure for patients with double-curve idiopathic scoliosis in freehand-technique in comparison to fluoroscopic- and CT-based navigation. Z Orthop Unfall 519:412–420. https://doi.org/10.1055/a-1121-8033

    Article  Google Scholar 

  19. Hammad A, Wirries A, Eberl J, Geiger F (2022) Derotation screws provide no advantage over polyaxial screws regarding coronal & sagittal correction in thoracic curves of AIS patients. Eur Spine J 31:3029–3035. https://doi.org/10.1007/s00586-022-07377-7

    Article  PubMed  Google Scholar 

  20. Mladenov KV, Vaeterlein C, Stuecker R (2011) Selective posterior thoracic fusion by means of direct vertebral derotation in adolescent idiopathic scoliosis: effects on the sagittal alignment. Eur Spine J 20:1114–1117. https://doi.org/10.1007/s00586-011-1740-7

    Article  PubMed  PubMed Central  Google Scholar 

  21. Watanabe K, Nakamura T, Iwanami A, Hosogane N, Tsuji T, Ishii K, Nakamura M, Toyama Y, Chiba K, Matsumoto M (2012) Vertebral derotation in adolescent idiopathic scoliosis causes hypokyphosis of the thoracic spine. BMC Musculoskelet Disord 13:99. https://doi.org/10.1186/1471-2474-13-99

    Article  PubMed  PubMed Central  Google Scholar 

  22. Perdriolle R, Vidal J (1987) Morphology of scoliosis: three-dimensional evolution. Orthopedics 10:909–915. https://doi.org/10.3928/0147-7447-19870601-10

    Article  CAS  PubMed  Google Scholar 

  23. Pankowski R, Wałejko S, Rocławski M, Ceynowa M, Mazurek T (2015) Intraoperative computed tomography versus Perdriolle and scoliometer evaluation of spine rotation in adolescent idiopathic scoliosis. Biomed Res Int. https://doi.org/10.1155/2015/460340

    Article  PubMed  PubMed Central  Google Scholar 

  24. Giehl JP, Zielke K, Hack HP (1989) Zielke ventral derotation spondylodesis. Orthopade 18:101–117

    CAS  PubMed  Google Scholar 

  25. Halm HF, Liljenqvist U, Niemeyer T, Chan DP, Zielke K, Winkelmann W (1998) Halm-Zielke instrumentation for primary stable anterior scoliosis surgery: operative technique and 2-year results in ten consecutive adolescent idiopathic scoliosis patients within a prospective clinical trial. Eur Spine J 7:429–434. https://doi.org/10.1007/s005860050103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zielke K (1982) Ventral derotation spondylodesis. results of treatment of cases of idiopathic lumbar scoliosis (author’s (author’s transl). Z Orthop Ihre Grenzgeb 120:320–329. https://doi.org/10.1055/s-2008-1051620

    Article  CAS  PubMed  Google Scholar 

  27. Ruf M, Drumm J, Jeszenszky D (2020) Anterior instrumented fusion for adolescent idiopathic scoliosis. Ann Transl Med 8:31. https://doi.org/10.21037/atm.2019.11.84

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fletcher ND, Hopkins J, McClung A, Browne R, Sucato DJ (2012) Residual thoracic hypokyphosis after posterior spinal fusion and instrumentation in adolescent idiopathic scoliosis: risk factors and clinical ramifications. Spine (Phila Pa 1976) 37:200–206. https://doi.org/10.1097/BRS.0b013e318216106c

    Article  PubMed  Google Scholar 

  29. Lykissas MG, Jain VV, Nathan ST, Pawar V, Eismann EA, Sturm PF, Crawford AH (2013) Mid- to long-term outcomes in adolescent idiopathic scoliosis after instrumented posterior spinal fusion: a meta-analysis. Spine (Phila Pa 1976) 38:113–119. https://doi.org/10.1097/BRS.0b013e31827ae3d0

    Article  Google Scholar 

  30. Cheng JC, Castelein RM, Chu WC, Danielsson AJ, Dobbs MB, Grivas TB, Gurnett CA, Luk KD, Moreau A, Newton PO, Stokes IA, Weinstein SL, Burwell RG (2015) Adolescent idiopathic scoliosis. Nat Rev Dis Primers 1:15030. https://doi.org/10.1038/nrdp.2015.30

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Berlin.

Ethics declarations

Conflicts of interest

There are no potential conflicts of interest related to the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berlin, C., Quante, M. & Halm, H. Influence of posterior instrumented correction with pedicle screw dual rod systems on thoracic kyphosis in Lenke 1 and 2 curves: minimum 2 years follow-up. Eur Spine J 32, 1187–1195 (2023). https://doi.org/10.1007/s00586-023-07617-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-023-07617-4

Keywords

Navigation