Skip to main content
Log in

Toward understanding the underlying mechanisms of pelvic tilt reserve in adult spinal deformity: the role of the 3D hip orientation

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To explore 3D hip orientation in standing position in subjects with adult spinal deformity (ASD) presenting with different levels of compensatory mechanisms.

Methods

Subjects with ASD (n = 159) and controls (n = 68) underwent full-body biplanar X-rays with the calculation of 3D spinopelvic, postural and hip parameters. ASD subjects were grouped as ASD with knee flexion (ASD-KF) if they compensated by flexing their knees (knee flexion ≥ 5°), and ASD with knee extension (ASD-KE) otherwise (knee flexion < 5°). Spinopelvic, postural and hip parameters were compared between the three groups. Univariate and multivariate analyses were then computed between spinopelvic and hip parameters.

Results

ASD-KF had higher SVA (67 ± 66 mm vs. 2 ± 33 mm and 11 ± 21 mm), PT (27 ± 14° vs. 18 ± 9° and 11 ± 7°) and PI-LL mismatch (20 ± 26° vs − 1 ± 18° and − 13 ± 10°) when compared to ASD-KE and controls (all p < 0.05). ASD-KF also had a more tilted (34 ± 11° vs. 28 ± 9° and 26 ± 7°), anteverted (24 ± 6° vs. 20 ± 5° and 18 ± 4°) and abducted (59 ± 6° vs. 57 ± 4° and 56 ± 4°) acetabulum, with a higher posterior coverage (100 ± 6° vs. 97 ± 7° for ASD-KE) when compared to ASD-KE and controls (all p < 0.05). The main determinants of acetabular tilt, acetabular abduction and anterior acetabular coverage were PT, SVA and LL (adjusted R2 [0.12; 0.5]).

Conclusions

ASD subjects compensating with knee flexion have altered hip orientation, characterized by increased posterior coverage (acetabular anteversion, tilt and posterior coverage) and decreased anterior coverage which can together lead to posterior femoro-acetabular impingement, thus limiting pelvic retroversion. This underlying mechanism could be potentially involved in the hip-spine syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lutz W, Sanderson W, Scherbov S (2008) The coming acceleration of global population ageing. Nature 451:716–719. https://doi.org/10.1038/nature06516

    Article  CAS  PubMed  Google Scholar 

  2. Schwab F, Dubey A, Gamez L et al (2005) Adult scoliosis: prevalence, SF-36, and nutritional parameters in an elderly volunteer population. Spine (Phila Pa 1976) 30:1082–1085. https://doi.org/10.1097/01.brs.0000160842.43482.cd

    Article  Google Scholar 

  3. Bess S, Line B, Fu K-M et al (2016) The health impact of symptomatic adult spinal deformity: comparison of deformity types to United States population norms and chronic diseases. Spine (Phila Pa 1976) 41:224–33. https://doi.org/10.1097/BRS.0000000000001202

    Article  Google Scholar 

  4. Ferrero E, Skalli W, Lafage V et al (2019) Relationships between radiographic parameters and spinopelvic muscles in adult spinal deformity patients. Eur Spine J. https://doi.org/10.1007/s00586-019-06243-3

    Article  PubMed  Google Scholar 

  5. Schwab F, Dubey A, Pagala M et al (2003) Adult scoliosis: a health assessment analysis by SF-36. Spine Phila (Pa 1976) 28:602–606. https://doi.org/10.1097/01.BRS.0000049924.94414.BB

    Article  Google Scholar 

  6. Kim HJ, Iyer S, Diebo BG et al (2018) Clinically significant thromboembolic disease in adult spinal deformity surgery: incidence and risk factors in 737 patients. Glob spine J 8:224–230. https://doi.org/10.1177/2192568217724781

    Article  Google Scholar 

  7. Diebo BG, Shah NV, Boachie-Adjei O et al (2019) Adult spinal deformity. Lancet 394:160–172. https://doi.org/10.1016/S0140-6736(19)31125-0

    Article  PubMed  Google Scholar 

  8. Dubousset J (1994) Three-dimensional analysis of the scoliotic deformity. Pediatr Spine 1994:479–496

    Google Scholar 

  9. Barrey C, Roussouly P, Le Huec J-C et al (2013) Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22:834–841. https://doi.org/10.1007/s00586-013-3030-z

    Article  PubMed Central  Google Scholar 

  10. Barrey C, Roussouly P, Perrin G, Le Huec J-C (2011) Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms? Eur Spine J 20:626–633. https://doi.org/10.1007/s00586-011-1930-3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lafage V, Schwab F, Skalli W et al (2008) Standing balance and sagittal plane spinal deformity: analysis of spinopelvic and gravity line parameters. Spine (Phila Pa 1976) 33:1572–1578. https://doi.org/10.1097/BRS.0b013e31817886a2

    Article  Google Scholar 

  12. Lazennec J-Y, Brusson A, Rousseau M-A (2013) Lumbar-pelvic-femoral balance on sitting and standing lateral radiographs. Orthop Traumatol Surg Res 99:S87–S103. https://doi.org/10.1016/j.otsr.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  13. Legaye J, Duval-Beaupère G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7:99–103. https://doi.org/10.1007/s005860050038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Obeid I, Hauger O, Aunoble S et al (2011) Global analysis of sagittal spinal alignment in major deformities: correlation between lack of lumbar lordosis and flexion of the knee. Eur Spine J 20:681–685. https://doi.org/10.1007/s00586-011-1936-x

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vialle R, Levassor N, Rillardon L et al (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87:260–267. https://doi.org/10.2106/JBJS.D.02043

    Article  PubMed  Google Scholar 

  16. Lafage R, Liabaud B, Diebo BG et al (2017) Defining the role of the lower limbs in compensating for sagittal malalignment. Spine Phila Pa 1976. https://doi.org/10.1097/BRS.0000000000002157

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lafage V, Schwab F, Patel A et al (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine (Phila Pa 1976) 34:E599–E606. https://doi.org/10.1097/BRS.0b013e3181aad219

    Article  Google Scholar 

  18. Hovorka I, Rousseau P, Bronsard N et al (2008) Mesure de la réserve d’extension de la hanche en relation avec le rachis. Étude comparative de deux méthodes radiologiques. Rev Chir Orthop Reparatrice Appar Mot 94:771–776. https://doi.org/10.1016/j.rco.2008.03.033

    Article  CAS  PubMed  Google Scholar 

  19. Obeid I, Hauger O, Aunoble S et al (2011) Global analysis of sagittal spinal alignment in major deformities: correlation between lack of lumbar lordosis and flexion of the knee. Eur Spine J 20(Suppl 5):681–685. https://doi.org/10.1007/s00586-011-1936-x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Buckland AJ, Vigdorchik J, Schwab FJ et al (2015) Acetabular anteversion changes due to spinal deformity correction: bridging the gap between hip and spine surgeons. J Bone Joint Surg Am 97:1913–1920. https://doi.org/10.2106/JBJS.O.00276

    Article  PubMed  Google Scholar 

  21. Thelen T, Thelen P, Demezon H et al (2017) Normative 3D acetabular orientation measurements by the low-dose EOS imaging system in 102 asymptomatic subjects in standing position: analyses by side, gender, pelvic incidence and reproducibility. Orthop Traumatol Surg Res 103:209–215. https://doi.org/10.1016/j.otsr.2016.11.010

    Article  CAS  PubMed  Google Scholar 

  22. Assi A, Mekhael M, Nacouzi R et al (2019) P 126 - Towards understanding the hip-spine syndrome in adults: a 3d approach in standing position. Gait Posture. https://doi.org/10.1016/j.gaitpost.2019.07.293

    Article  PubMed  Google Scholar 

  23. Faro FD, Marks MC, Pawelek J, Newton PO (2004) Evaluation of a functional position for lateral radiograph acquisition in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29:2284–2289

    Article  Google Scholar 

  24. Ghostine B, Sauret C, Assi A et al (2017) Influence of patient axial malpositioning on the trueness and precision of pelvic parameters obtained from 3D reconstructions based on biplanar radiographs. Eur Radiol 27:1295–1302. https://doi.org/10.1007/s00330-016-4452-x

    Article  PubMed  Google Scholar 

  25. Vialle R (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Jt Surg 87:260. https://doi.org/10.2106/JBJS.D.02043

    Article  Google Scholar 

  26. Duval-Beaupère G, Schmidt C, Cosson P (1992) A barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20:451–462. https://doi.org/10.1007/BF02368136

    Article  PubMed  Google Scholar 

  27. Minoda Y, Kobayashi A, Iwaki H et al (2008) Sagittal alignment of the lower extremity while standing in Japanese male. Arch Orthop Trauma Surg 128:435–442. https://doi.org/10.1007/s00402-007-0528-z

    Article  PubMed  Google Scholar 

  28. Schwab F, Skalli W, El Fegoun AB et al (2005) Center of gravity and radiographic posture analysis: a preliminary review of adult volunteers and adult patients affected by scoliosis. Spine (Phila Pa 1976) 30:1535–1540. https://doi.org/10.1097/01.brs.0000167534.49069.e9

    Article  Google Scholar 

  29. Tardieu C, Bonneau N, Hecquet JÔ et al (2013) How is sagittal balance acquired during bipedal gait acquisition? Comparison of neonatal and adult pelves in three dimensions. Evolutionary implications. J Hum Evol 65:209–222. https://doi.org/10.1016/j.jhevol.2013.06.002

    Article  PubMed  Google Scholar 

  30. Liu S, Lafage V, Ferrero E et al (2014) Chain of compensation related to PI-LL mismatch: a complete standing axis investigation including the lower extremities. Spine J 14:S74. https://doi.org/10.1016/j.spinee.2014.08.191

    Article  Google Scholar 

  31. Prather H, Van Dillen LR, Kymes SM et al (2012) Impact of coexistent lumbar spine disorders on clinical outcomes and physician charges associated with total hip arthroplasty. Spine J 12:363–369. https://doi.org/10.1016/j.spinee.2011.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stefl M, Lundergan W, Heckmann N et al (2017) Hip arthroplasty: avoiding and managing problems spinopelvic mobility and acetabular component position for total hip arthroplasty. Bone Jt J 99B:37–45. https://doi.org/10.1302/0301-620X.99B1.BJJ-2016-0415.R1

    Article  Google Scholar 

  33. Lazennec J-Y, Brusson A, Rousseau M-A (2011) Hip-spine relations and sagittal balance clinical consequences. Eur Spine J 20:1–13. https://doi.org/10.1007/s00586-011-1937-9

    Article  Google Scholar 

  34. Rivière C, Lazic S, Dagneaux L et al (2018) Spine–hip relations in patients with hip osteoarthritis. EFORT Open Rev 3:39–44. https://doi.org/10.1302/2058-5241.3.170020

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the University of Saint-Joseph (grant FM361) and EUROSPINE (TFR2020#22). The funding sources did not intervene in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman Assi.

Ethics declarations

Conflict of interest

MM, GK, RMS, ES, WS, EJ, RR, KK, GK, IG, VL and AA, declare that they have no conflict of interest related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mekhael, M., Kawkabani, G., Saliby, R.M. et al. Toward understanding the underlying mechanisms of pelvic tilt reserve in adult spinal deformity: the role of the 3D hip orientation. Eur Spine J 30, 2495–2503 (2021). https://doi.org/10.1007/s00586-021-06778-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-021-06778-4

Keywords

Navigation