Skip to main content
Log in

Biomechanical advantages of supplemental accessory and satellite rods with and without interbody cages implantation for the stabilization of pedicle subtraction osteotomy

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effect of anterior interbody cages, accessory and satellite rods usage on primary stability and rod strains for PSO stabilization.

Methods

Seven human cadaveric spine segments (T12-S1) underwent PSO at L4 with posterior fixation from L2 to S1. In vitro flexibility tests were performed under pure moments in flexion/extension (FE), lateral bending (LB) and axial rotation (AR) to determine the range of motion, while measuring the strains on the primary rods with strain gauge rosettes. Six constructs with 2, 3 and 4 rods, with and without interbody cages implantation adjacent to the PSO site, were compared.

Results

All constructs had comparable effects in reducing spine kinematics compared to the intact condition (− 94% in FE and LB; − 80% in AR). Supplementation of 2 rods with lateral accessory rods (4 rods) was the most effective strategy in minimizing primary rod strains, particularly when coupled to cages (p ≤ 0.005; − 50% in FE, − 42% in AR and − 11% in LB); even without cages, the strains were significantly reduced (p ≤ 0.009; − 26%, − 37%, − 9%). The addition of a central satellite rod with laminar hooks (3 rods) effectively reduced rod strains in FE (p ≤ 0.005; − 30%) only in combination with cages.

Conclusions

The study supports the current clinical practice providing a strong biomechanical rationale to recommend 4-rod constructs based on accessory rods combined with cages adjacent to PSO site. Although weaker, the usage of accessory rods without cages and of a central satellite rod with hooks in combination with interbody spacers may also be justified.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Enercan M, Ozturk C, Kahraman S, Sarıer M, Hamzaoglu A, Alanay A (2013) Osteotomies/spinal column resections in adult deformity. Eur Spine J 22(Suppl 2):254–264. https://doi.org/10.1007/s00586-012-2313-0

    Article  Google Scholar 

  2. Dorward IG, Lenke LG (2010) Osteotomies in the posterior-only treatment of complex adult spinal deformity: a comparative review. Neurosurg Focus 28(3):E4. https://doi.org/10.3171/2009.12.FOCUS09259

    Article  PubMed  Google Scholar 

  3. Bridwell KH (2006) Decision making regarding Smith-Petersen vs. pedicle subtraction osteotomy vs. vertebral column resection for spinal deformity. Spine 31(Suppl 19):171–178

    Article  Google Scholar 

  4. Hyun SJ, Lenke LG, Kim YC, Koester L, Blanke KM (2014) Comparison of standard 2-rod constructs to multiple-rod constructs for fixation across 3-column spinal osteotomies. Spine 39(22):1899–1904. https://doi.org/10.1097/BRS.0000000000000556

    Article  PubMed  Google Scholar 

  5. O’Neill KR, Lenke LG, Bridwell KH, Neuman BJ, Kim HJ, Archer KR (2015) Factors associated with long-term patient-reported outcomes after three-column osteotomies. Spine J 15(11):2312–2318. https://doi.org/10.1016/j.spinee.2015.06.044

    Article  PubMed  Google Scholar 

  6. Kim YJ, Bridwell KH, Lenke LG, Cheh G, Baldus C (2007) Results of lumbar pedicle subtraction osteotomies for fixed sagittal imbalance: a minimum 5-year follow-up study. Spine 32(20):2189–2197

    Article  PubMed  Google Scholar 

  7. Bridwell KH, Lewis SJ, Lenke LG (2003) Pedicle subtraction osteotomy for the treatment of fixed sagittal imbalance. J Bone Jt Surg Am 85:454–463

    Article  Google Scholar 

  8. Smith JS, Shaffrey CI, Klineberg E, Lafage V, Schwab F, Lafage R, Kim HJ, Hostin R, Mundis GM Jr, Gupta M, Liabaud B, Scheer JK, Diebo BG, Protopsaltis TS, Kelly MP, Deviren V, Hart R, Burton D, Bess S, Ames CP, on behalf of the International Spine Study Group (2017) Complication rates associated with 3-column osteotomy in 82 adult spinal deformity patients: retrospective review of a prospectively collected multicenter consecutive series with 2-year follow-up. J Neurosurg Spine 27(4):444–457. https://doi.org/10.3171/2016.10.SPINE16849

    Article  PubMed  Google Scholar 

  9. Gupta S, Eksi MS, Ames CP, Deviren V, Durbin-Johnson B, Smith JS, Gupta MC (2017) A Novel 4-rod technique offers potential to reduce rod breakage and pseudarthrosis in pedicle subtraction osteotomies for adult spinal deformity correction. Oper Neurosurg (Hagerstown). https://doi.org/10.1093/ons/opx151

    Article  Google Scholar 

  10. Luca A, Lovi A, Galbusera F, Brayda-Bruno M (2014) Revision surgery after PSO failure with rod breakage: a comparison of different techniques. Eur Spine J 23(6):610–615. https://doi.org/10.1007/s00586-014-3555-9

    Article  PubMed  Google Scholar 

  11. Smith JS, Shaffrey E, Klineberg E, Shaffrey CI, Lafage V, Schwab FJ, Protopsaltis T, Scheer JK, Mundis GM, Fu KMG, Gupta MC, Hostin R, Deviren V, Kebaish K, Hart R, Burton DC, Line B, Bess S, Ames CP (2014) Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity. J Neurosurg Spine 21(6):994–1003. https://doi.org/10.3171/2014.9.SPINE131176

    Article  PubMed  Google Scholar 

  12. Smith JS, Shaffrey CI, Ames CP, Demakakos J, Fu KMG, Keshavarzi S, Li CMY, Deviren V, Schwab FJ, Lafage V, Bess S (2012) Assessment of symptomatic rod fracture after posterior instrumented fusion for adult spinal deformity. Neurosurgery 71(4):862–867. https://doi.org/10.1227/NEU.0b013e3182672aab

    Article  PubMed  Google Scholar 

  13. Ottardi C, Galbusera F, Luca A, Prosdocimo L, Sasso M, Brayda-Bruno M, Villa T (2016) Finite element analysis of the lumbar destabilization following pedicle subtraction osteotomy. Med Eng Phys 38(5):506–509. https://doi.org/10.1016/j.medengphy.2016.02.002

    Article  PubMed  Google Scholar 

  14. Berjano P, Bassani R, Casero G, Sinigaglia A, Cecchinato R, Lamartina C (2013) Failures and revisions in surgery for sagittal imbalance: analysis of factors influencing failure. Eur Spine J 22(6):S853–S858

    Article  PubMed  Google Scholar 

  15. Hyun SJ, Rhim SC (2010) Clinical outcomes and complications after pedicle subtraction osteotomy for fixed sagittal imbalance patients: a long-term follow-up data. J Korean Neurosurg Soc 47(2):95–101. https://doi.org/10.3340/jkns.2010.47.2.95

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hyun SJ, Lenke LG, Kim YC, Koester LA, Blanke KM (2015) Long-term radiographic outcomes of a central hook-rod construct for osteotomy closure: minimum 5-year follow-up. Spine (Phila Pa 1976) 40(7):E428–E432. https://doi.org/10.1097/brs.0000000000000783

    Article  Google Scholar 

  17. Watanabe K, Lenke LG, Daubs MD, Kim YW, Kim YB, Watanabe K, Stobbs G (2008) A central hook-rod construct for osteotomy closure: a technical note. Spine (Phila Pa 1976) 33(10):1149–1155. https://doi.org/10.1097/brs.0b013e31816f5f23

    Article  Google Scholar 

  18. ISSG, GuptaM Henry J, Lafage V, Schwab FJ, Ames CP et al (2015) Reducing rod breakage and nonunion in pedicle subtraction osteotomy: the importance of rod number and configuration in 264 patients with 2-years follow-up. Spine J 15:154S–155S. https://doi.org/10.1016/j.spinee.2015.07.173

    Article  Google Scholar 

  19. Scheer JK, Tang JA, Deviren V, Buckley JM, Pekmezci M, McClellan RT, Ames CP (2011) Biomechanical analysis of revision strategies for rod fracture in pedicle subtraction osteotomy. Neurosurgery 69(1):164–172. https://doi.org/10.1227/neu.0b013e31820f362a (discussion 172)

    Article  PubMed  Google Scholar 

  20. Deviren V, Tang JA, Scheer JK, Buckley JM, Pekmezci M, McClellan RT, Ames CP (2012) Construct rigidity after fatigue loading in pedicle subtraction osteotomy with or without adjacent interbody structural cages. Glob Spine J 2(4):213–220

    Article  Google Scholar 

  21. Hallager DW, Gehrchen M, Dahl B, Harris JA, Gudipally M, Jenkins S, Wu AM, Bucklen BS (2016) Use of supplemental short pre-contoured accessory rods and cobalt chrome alloy posterior rods reduces primary rod strain and range of motion across the pedicle subtraction osteotomy level: an in vitro biomechanical study. Spine 41(7):E388–E395. https://doi.org/10.1097/BRS.0000000000001282

    Article  PubMed  Google Scholar 

  22. Luca A, Ottardi C, Sasso M, Prosdocimo L, La Barbera L, Brayda-Bruno M, Galbusera F, Villa T (2017) Instrumentation failure following pedicle subtraction osteotomy: the role of rod material, diameter, and multi-rod constructs. Eur Spine J 26(3):764–770. https://doi.org/10.1007/s00586-016-4859-8

    Article  PubMed  Google Scholar 

  23. Luca A, Ottardi C, Lovi A, Brayda-Bruno M, Villa T, Galbusera F (2017) Anterior support reduces the stresses on the posterior instrumentation after pedicle subtraction osteotomy: a finite-element study. Eur Spine J 26(Suppl 4):450–456. https://doi.org/10.1007/s00586-017-5084-9

    Article  PubMed  Google Scholar 

  24. Wilke H-J, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3(2):91–97

    Article  PubMed  CAS  Google Scholar 

  25. Wilke H-J, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec 251(1):15–19

    Article  PubMed  CAS  Google Scholar 

  26. Wilke H-J, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. La Barbera L, Villa T (2017) Toward the definition of a new worst-case paradigm for the preclinical evaluation of posterior spine stabilization devices. Proc Inst Mech Eng H 231(2):176–185. https://doi.org/10.1177/0954411916684365

    Article  PubMed  Google Scholar 

  28. La Barbera L, Villa T (2016) ISO 12189 standard for the preclinical evaluation of posterior spinal stabilization devices—I: assembly procedure and validation. Proc Inst Mech Eng H 230(2):122–133. https://doi.org/10.1177/0954411915621587

    Article  PubMed  Google Scholar 

  29. Dahl BT, Harris JA, Gudipally M, Moldavsky M, Khalil S, Bucklen BS (2017) Kinematic efficacy of supplemental anterior lumbar interbody fusion at lumbosacral levels in thoracolumbosacral deformity correction with and without pedicle subtraction osteotomy at L3: an in vitro cadaveric study. Eur Spine J 26(11):2773–2781. https://doi.org/10.1007/s00586-017-5222-4

    Article  PubMed  Google Scholar 

  30. Lehman RA, Kang DG, Wagner SC, Paik H, Cardoso MJ, Bernstock JD, Dmitriev AE (2015) Biomechanical stability of transverse connectors in the setting of a thoracic pedicle subtraction osteotomy. Spine J 15:1629–1635. https://doi.org/10.1016/j.spinee.2015.03.010

    Article  PubMed  Google Scholar 

  31. Berti F, La Barbera L, Piovesan A, Allegretti D, Ottardi C, Villa T, Pennati G (2018) Residual stresses in titanium spinal rods: effects of two contouring methods and material plastic properties. J Mech Behav Biomed Mater. Submitted on 10/01/2018

  32. Tang JA, Leasure JM, Smith JS, Buckley JM, Kondrashov D, Ames CP (2013) Effect of severity of rod contour on posterior rod failure in the setting of lumbar pedicle subtraction osteotomy (PSO): a biomechanical study. Neurosurgery 72(2):276–282. https://doi.org/10.1227/neu.0b013e31827ba066 (discussion 283)

    Article  PubMed  Google Scholar 

  33. Lindsey C, Deviren V, Xu Z, Yeh RF, Puttlitz CM (2006) The effects of rod contouring on spinal construct fatigue strength. Spine (Phila Pa 1976) 1 31(15):1680–1687

    Article  Google Scholar 

  34. Ottardi C (2015) Ph.D. thesis. Politecnico di Milano, Dec 2015

  35. Wilke HJ, Rohlmann A, Neller S, Schultheiss M, Bergmann G, Graichen F, Claes LE (2001) Is it possible to simulate physiologic loading conditions by applying pure moments? A comparison of in vivo and in vitro load components in an internal fixator. Spine (Phila Pa 1976) 15 26(6):636–642

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Scoliosis Research Society through a New Investigator Grant. The authors gratefully acknowledge DePuy Synthes (Raynham, MA, USA), Medtronic Sofamor Danek (Minneapolis, MN, USA) and NuVasive (San Diego, CA, USA) for providing the implants and surgical tools. The authors gratefully acknowledge Gloria Casaroli Ph.D., Maria Luisa Ruspi, Lisa Flachmüller and Theodor Di Pauli von Treuheim for their assistance during specimens’ preparation. Tito Bassani Ph.D. is gratefully acknowledged for comments regarding statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi La Barbera Ph.D..

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest related to the content of the current study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 8226 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Barbera, L., Brayda-Bruno, M., Liebsch, C. et al. Biomechanical advantages of supplemental accessory and satellite rods with and without interbody cages implantation for the stabilization of pedicle subtraction osteotomy. Eur Spine J 27, 2357–2366 (2018). https://doi.org/10.1007/s00586-018-5623-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-018-5623-z

Keywords

Navigation