Skip to main content
Log in

Biomechanical properties of posterior transpedicular–transdiscal oblique lumbar screw fixation with novel trapezoidal lateral interbody spacer: an in vitro human cadaveric model

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To investigate biomechanical properties of posterior transpedicular–transdiscal (TPTD) oblique lumbar screw fixation whereby the screw traverses the inferior pedicle across the posterior disc space into the super-adjacent body and lateral trapezoidal interbody spacer.

Methods

Eight fresh–frozen osteoligamentous human cadaveric spines (L1–S1) were tested in flexion–extension (FE), lateral bending (LB), and axial rotation (AR), with pure bending moment set at 7.5 Nm. Surgical constructs included (1) intact spine; (2) bilateral pedicle screw (BPS) fixation at L3–L4; (3) TPTD screw fixation at L3–L4; (4) lateral L3–L4 discectomy; (5) TPTD screw fixation with lateral interbody spacer (TPTD+S); and (6) BPS fixation with lateral interbody spacer (BPS+S). Peak range of motion (ROM) at L3–L4 was normalized to intact for statistical analysis.

Results

In FE and LB, all posterior fixation with or without interbody spacers significantly reduced motion compared with intact and discectomy. BPS and BPS+S provided increased fixation in all planes of motion; significantly reducing FE and LB motion relative to TPTD (p = 0.005, p = 0.002 and p = 0.020, p = 0.004, respectively). In AR, only BPS significantly reduced normalized ROM to intact (p = 0.034); BPS+S provided greater fixation compared with TPTD+S (p = 0.005).

Conclusions

Investigators found less stiffness with TPTD screw fixation than with BPS regardless of immediate stabilization with lateral discectomy and spacer. Clinical use should be decided by required biomechanical performance, difficulty of installation, and extent of paraspinal tissue disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Umeta RS, Avanzi O (2011) Techniques of lumbar-sacral spine fusion in spondylosis: systematic literature review and meta-analysis of randomized clinical trials. Spine J 11:668–676. doi:10.1016/j.spinee.2011.04.026

    Article  PubMed  Google Scholar 

  2. Suk SI, Kim JH, Kim SS, Lim DJ (2012) Pedicle screw instrumentation in adolescent idiopathic scoliosis (AIS). Eur Spine J 21:13–22. doi:10.1007/s00586-011-1986-0

    Article  PubMed  Google Scholar 

  3. Boos N, Webb JK (1997) Pedicle screw fixation in spinal disorders: a European view. Eur Spine J 6:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Adogwa O, Parker SL, Davis BJ, Aaronson O, Devin C, Cheng JS, McGirt MJ (2011) Cost-effectiveness of transforaminal lumbar interbody fusion for Grade I degenerative spondylolisthesis. J Neurosurg Spine 15:138–143. doi:10.3171/2011.3.SPINE10562

    Article  PubMed  Google Scholar 

  5. Jutte PC, Castelein RM (2002) Complications of pedicle screws in lumbar and lumbosacral fusions in 105 consecutive primary operations. Eur Spine J 11:594–598. doi:10.1007/s00586-002-0469-8

    Article  CAS  PubMed  Google Scholar 

  6. Koutsoumbelis S, Hughes AP, Girardi FP, Cammisa FP Jr, Finerty EA, Nguyen JT, Gausden E, Sama AA (2011) Risk factors for postoperative infection following posterior lumbar instrumented arthrodesis. J Bone Joint Surg Am 93:1627–1633. doi:10.2106/JBJS.J.00039

    Article  PubMed  Google Scholar 

  7. Lonstein JE, Denis F, Perra JH, Pinto MR, Smith MD, Winter RB (1999) Complications associated with pedicle screws. J Bone Joint Surg Am 81:1519–1528

    Article  CAS  PubMed  Google Scholar 

  8. Dickman CA, Fessler RG, MacMillan M, Haid RW (1992) Transpedicular screw-rod fixation of the lumbar spine: operative technique and outcome in 104 cases. J Neurosurg 77:860–870. doi:10.3171/jns.1992.77.6.0860

    Article  CAS  PubMed  Google Scholar 

  9. Birkenmaier C (2012) Guided Oblique Lumbar Interbody Fusion (GO-LIF®). In: Vieweg U, Grochulla F (eds) Manual of spine surgery. Springer, Berlin, pp 391–401

    Chapter  Google Scholar 

  10. Logroscino CA, Tamburrelli FC, Scaramuzzo L, Schiro GR, Sessa S, Proietti L (2012) Transdiscal L5-S1 screws for the treatment of adult spondylolisthesis. Eur Spine J 21(Suppl 1):S128–S133. doi:10.1007/s00586-012-2229-8

    Article  PubMed  Google Scholar 

  11. Palejwala A, Fridley J, Jea A (2016) Transsacral transdiscal L5-S1 screws for the management of high-grade spondylolisthesis in an adolescent. J Neurosurg Pediatr 17:645–650. doi:10.3171/2015.12.PEDS15535

    Article  PubMed  Google Scholar 

  12. Grob D, Humke T, Dvorak J (1996) Direct pediculo-body fixation in cases of spondylolisthesis with advanced intervertebral disc degeneration. Eur Spine J 5:281–285

    Article  CAS  PubMed  Google Scholar 

  13. Zagra A, Giudici F, Minoia L, Corriero AS, Zagra L (2009) Long-term results of pediculo-body fixation and posterolateral fusion for lumbar spondylolisthesis. Eur Spine J 18(Suppl 1):151–155. doi:10.1007/s00586-009-0997-6

    Article  PubMed  PubMed Central  Google Scholar 

  14. St Clair S, Tan JS, Lieberman I (2012) Oblique lumbar interbody fixation: a biomechanical study in human spines. J Spinal Disord Tech 25:183–189. doi:10.1097/BSD.0b013e318211fc6b

    Article  PubMed  Google Scholar 

  15. Wu AM, Ni WF, Shao ZX, Kong XJ, Tian NF, Huang YX, Lin ZK, Xu HZ, Chi YL (2015) Percutaneous posterior transdiscal oblique screw fixation with lateral interbody fusion: a radiological and cadaveric study. Eur Spine J 24:852–858. doi:10.1007/s00586-014-3663-6

    Article  PubMed  Google Scholar 

  16. Wu AM, Tian NF, Wu LJ, He W, Ni WF, Wang XY, Xu HZ, Chi YL (2013) A radiological and cadaveric study of oblique lumbar interbody fixation in patients with normal spinal anatomy. Bone Joint J. 95:977–982. doi:10.1302/0301-620X.95B7.31393

    Article  PubMed  Google Scholar 

  17. Minamide A, Akamaru T, Yoon ST, Tamaki T, Rhee JM, Hutton WC (2003) Transdiscal L5-S1 screws for the fixation of isthmic spondylolisthesis: a biomechanical evaluation. J Spinal Disord Tech 16:144–149

    Article  PubMed  Google Scholar 

  18. Aghayev K, Gonzalez-Blohm SA, Doulgeris JJ, Lee WE 3rd, Waddell JK, Vrionis FD (2014) Feasibility and biomechanical performance of a novel transdiscal screw system for one level in non-spondylolisthetic lumbar fusion: an in vitro investigation. Spine J 14:705–713. doi:10.1016/j.spinee.2013.08.033

    Article  PubMed  Google Scholar 

  19. Birkenmaier C, Suess O, Pfeiffer M, Burger R, Schmieder K, Wegener B (2010) The European multicenter trial on the safety and efficacy of guided oblique lumbar interbody fusion (GO-LIF). BMC Musculoskelet Disord 11:199. doi:10.1186/1471-2474-11-199

    Article  PubMed  PubMed Central  Google Scholar 

  20. Arlet V, Aebi M (2013) Junctional spinal disorders in operated adult spinal deformities: present understanding and future perspectives. Eur Spine J 22(Suppl 2):S276–S295. doi:10.1007/s00586-013-2676-x

    Article  PubMed  Google Scholar 

  21. Liu X, Wang Y, Qiu G, Weng X, Yu B (2014) A systematic review with meta-analysis of posterior interbody fusion versus posterolateral fusion in lumbar spondylolisthesis. Eur Spine J 23:43–56. doi:10.1007/s00586-013-2880-8

    Article  PubMed  Google Scholar 

  22. Tan JS, Kayanja MM, St Clair SF (2010) The difference in spine specimen dual-energy X-ray absorptiometry bone mineral density between in situ and in vitro scans. Spine J 10:784–788. doi:10.1016/j.spinee.2010.02.016

    Article  PubMed  Google Scholar 

  23. Frost HM (1994) Wolff’s Law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod 64:175–188. doi:10.1043/0003-3219(1994)064<0175:WLABSA>2.0.CO;2

    CAS  PubMed  Google Scholar 

  24. Wilke HJ, Krischak S, Claes L (1996) Biomechanical comparison of calf and human spines. J Orthop Res 14:500–503. doi:10.1002/jor.1100140321

    Article  CAS  PubMed  Google Scholar 

  25. Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ (1994) Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am 76:413–424

    Article  CAS  PubMed  Google Scholar 

  26. Maletsky LP, Sun J, Morton NA (2007) Accuracy of an optical active-marker system to track the relative motion of rigid bodies. J Biomech 40:682–685. doi:10.1016/j.jbiomech.2006.01.017

    Article  PubMed  Google Scholar 

  27. Schmidt J, Berg DR, Ploeg HL, Ploeg L (2009) Precision, repeatability and accuracy of Optotrak optical motion tracking systems. Int J Exp Comput Biomech. 1(1):114–127

    Article  Google Scholar 

  28. Erdfelder E, Faul F, Buchner A (1996) GPOWER: a General Power Analysis Program. Behav Res Methods Instrum Comput 28:1–11. doi:10.3758/BF03203630

    Article  Google Scholar 

  29. Klemencsics I, Lazary A, Szoverfi Z, Bozsodi A, Eltes P, Varga PP (2016) Risk factors for surgical site infection in elective routine degenerative lumbar surgeries. Spine J. doi:10.1016/j.spinee.2016.08.018

    PubMed  Google Scholar 

  30. Olsen MA, Nepple JJ, Riew KD, Lenke LG, Bridwell KH, Mayfield J, Fraser VJ (2008) Risk factors for surgical site infection following orthopaedic spinal operations. J Bone Joint Surg Am 90:62–69. doi:10.2106/JBJS.F.01515

    Article  PubMed  Google Scholar 

  31. Davne SH, Myers DL (1992) Complications of lumbar spinal fusion with transpedicular instrumentation. Spine (Phila Pa 1976) 17:S184–S189

    Article  CAS  Google Scholar 

  32. Galbusera F, Volkheimer D, Reitmaier S, Berger-Roscher N, Kienle A, Wilke HJ (2015) Pedicle screw loosening: a clinically relevant complication? Eur Spine J 24:1005–1016. doi:10.1007/s00586-015-3768-6

    Article  PubMed  Google Scholar 

  33. Abdu WA, Wilber RG, Emery SE (1994) Pedicular transvertebral screw fixation of the lumbosacral spine in spondylolisthesis. A new technique for stabilization. Spine (Phila Pa 1976). 19:710–715

    Article  CAS  Google Scholar 

  34. West JL, Ogilvie JW, Bradford DS (1991) Complications of the variable screw plate pedicle screw fixation. Spine (Phila Pa 1976). 16:576–579

    Article  Google Scholar 

  35. McAfee PC, Yuan HA, Fredrickson BE, Lubicky JP (1983) The value of computed tomography in thoracolumbar fractures. An analysis of one hundred consecutive cases and a new classification. J Bone Joint Surg Am 65:461–473

    Article  CAS  PubMed  Google Scholar 

  36. Bergmark A (1989) Stability of the lumbar spine. A study in mechanical engineering. Acta Orthop Scand Suppl 230:1–54

    Article  CAS  PubMed  Google Scholar 

  37. Zhou ZJ, Zhao FD, Fang XQ, Zhao X, Fan SW (2011) Meta-analysis of instrumented posterior interbody fusion versus instrumented posterolateral fusion in the lumbar spine. J Neurosurg Spine 15:295–310. doi:10.3171/2011.4.SPINE10330

    Article  PubMed  Google Scholar 

  38. Hart RA, Domes CM, Goodwin B, D’Amato CR, Yoo JU, Turker RJ, Halsey MF (2014) High-grade spondylolisthesis treated using a modified Bohlman technique: results among multiple surgeons. J Neurosurg Spine 20:523–530. doi:10.3171/2014.1.SPINE12904

    Article  PubMed  Google Scholar 

  39. Bohlman HH, Cook SS (1982) One-stage decompression and posterolateral and interbody fusion for lumbosacral spondyloptosis through a posterior approach. Report of two cases. J Bone Joint Surg Am 64:415–418

    Article  CAS  PubMed  Google Scholar 

  40. Pimenta L (2001) Lateral endoscopic transpsoas retroperitoneal approach for lumbar spine surgery. Paper presentation at the VIII Brazilian Spine Society Meeting, Belo Horizonte, Minas Gerais, Brazil, May

  41. Ozgur BM, Aryan HE, Pimenta L, Taylor WR (2006) Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6:435–443. doi:10.1016/j.spinee.2005.08.012

    Article  PubMed  Google Scholar 

  42. Kelly MR, Perez-Orribo L, Reyes P, Godzik J, Kalb E. Martinez del-Campo V, Singh A. Newcomb N. Crawford (2016) Biomechanical Evaluation of Interbody Fixation with Secondary Augmentation: Direct Lateral versus Posterior and Transforaminal Interbody Fusion. In: International Society for the Advancement of Spine Surgery. Las Vegas

  43. Sembrano JN, Yson SC, Horazdovsky RD, Santos ER, Polly DW Jr (2015) Radiographic comparison of lateral lumbar interbody fusion versus traditional fusion approaches: analysis of sagittal contour change. Int J Spine Surg 9:16. doi:10.14444/2016

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rodgers WB, Gerber EJ, Patterson J (2011) Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine (Phila Pa 1976). 36:26–32. doi:10.1097/BRS.0b013e3181e1040a

    Article  Google Scholar 

  45. Youssef JA, McAfee PC, Patty CA, Raley E, DeBauche S, Shucosky E, Chotikul L (2010) Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine (Phila Pa 1976). 35:S302–S311. doi:10.1097/BRS.0b013e3182023438

    Article  Google Scholar 

  46. Shen FH, Samartzis D, Khanna AJ, Anderson DG (2007) Minimally invasive techniques for lumbar interbody fusions. Orthop Clin N Am 38:373–386. doi:10.1016/j.ocl.2007.04.002

    Article  Google Scholar 

  47. Pimenta L, Turner AW, Dooley ZA, Parikh RD, Peterson MD (2012) Biomechanics of lateral interbody spacers: going wider for going stiffer. Sci World J 2012:381814. doi:10.1100/2012/381814

    Article  Google Scholar 

  48. Haughton VM, Schmidt TA, Keele K, An HS, Lim TH (2000) Flexibility of lumbar spinal motion segments correlated to type of tears in the annulus fibrosus. J Neurosurg 92(1 Suppl):81–86

    CAS  PubMed  Google Scholar 

  49. Li N, He D, Xing Y, Lv Y, Tian W (2015) The effect of lateral wall perforation on screw pull-out strength: a cadaveric study. J Orthop Surg Res 10:6. doi:10.1186/s13018-015-0157-0

    Article  PubMed  PubMed Central  Google Scholar 

  50. Goda Y, Higashino K, Toki S, Suzuki D, Kobayashi T, Matsuura T, Fujimiya M, Hutton WC, Fukui Y, Sairyo K (2016) The pullout strength of pedicle screws following redirection after lateral wall breach or end-plate breach. Spine (Phila Pa 1976). 41:1218–1223. doi:10.1097/BRS.0000000000001600

    Article  Google Scholar 

  51. Nottmeier EW, Pirris SM (2013) Placement of thoracic transvertebral pedicle screws using 3D image guidance. J Neurosurg Spine 18:479–483. doi:10.3171/2013.2.SPINE12819

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dolores Matthews, MEd, ELS, for contributions in editing the manuscript.

Funding

National Natural Sciences Foundation of China (No. 81501933) and Xinmiao Talent Plan of Zhejiang Province (No. 2014R413053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Harris.

Ethics declarations

The authors performed this study in the biomechanical laboratory at Globus Medical, Inc. (GMI), using its six-degrees-of-freedom motion simulator. A-MW and Y-LC have no financial relationships with GMI. A-MW was supported by National Natural Sciences Foundation of China (No. 81501933) and Xinmiao Talent Plan of Zhejiang Province (No. 2014R413053). National Natural Sciences Foundation of China and Xinmiao Talent Plan of Zhejiang Province paid all travel fees but had no role in designing or conducting this study. Funders had no role in study design, data collection and analysis, decision to publish, or manuscript preparation. Cadaveric specimens and related materials were provided by GMI, at which JAH and BSB are employees. JCH and SMJ are visiting interns.

Conflict of interest

BSB and JAH are paid employees of Globus Medical, Inc., JCH and SMJ were temporary, hourly paid interns of Globus Medical, Inc., YLC and AMW have nothing to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, AM., Harris, J.A., Hao, J.C. et al. Biomechanical properties of posterior transpedicular–transdiscal oblique lumbar screw fixation with novel trapezoidal lateral interbody spacer: an in vitro human cadaveric model. Eur Spine J 26, 2873–2882 (2017). https://doi.org/10.1007/s00586-017-5050-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-017-5050-6

Keywords

Navigation