Skip to main content
Log in

Morphometry of the lower lumbar intervertebral discs and endplates: comparative analyses of new MRI data with previous findings

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Variability of the human lower lumbar geometry is related to complications of disc arthroplasty surgery. Accurate morphometric descriptions are essential for the design of artificial intervertebral discs to ensure good prothesis-vertebra contact and better load distribution, and can improve spinal biomechanics. Unfortunately, current knowledge of the lower lumbar geometry is limited either in the representativeness of sample populations or the accuracy and comprehensiveness of measurements. The objective of this study was to establish an accurate and reliable measurement protocol, provide a comprehensive database of lower lumbar geometry, and compare and summarize geometric data as reported in the literature.

Methods

T2-weighted magnetic resonance imaging (MRI) scans of lower lumbar spine (L3–S1), taken from 109 adult subjects, were anonymized from the digital archive of a local hospital. A total of 318 intervertebral discs and 590 endplates met the inclusion criteria and were studied. Linear and planar measurements were performed using OsiriX software, and analyzed using split plot factorial (SPF) analysis of variance (ANOVA), independent student t tests, paired sample t tests, and Tukey’s honest significant difference (HSD) post hoc tests.

Results

Excellent intra- and inter-observer reliabilities were achieved using the proposed measurement protocol. The results of this study indicated that male subjects had significantly larger geometric dimensions. L5/S1 discs had the smallest geometric dimensions compared to the discs at other two levels. Significant craniocaudal differences were found in endplate morpohometry. The error associated with using ellipsoid methods was quantified at each lower lumbar level. A large comprehensive database compiling lower lumbar geometry from many studies was established. This study provides geometric data for the female subjects at the L5/S1 level, previously lacking in the literature.

Conclusion

This study demonstrates the potential of using MRI data to establish a standard measurement protocol for morphometric quantification of the lower lumbar intervertebral discs and vertebral endplates. These results are invaluable in characterizing comprehensive lower lumbar morphometry, which may provide crucial information for planning spinal surgeries, designing artificial intervertebral discs, and for biomechanical modeling of the low lack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Spine (Phila Pa 1976) 14(6):606–610

    Article  CAS  Google Scholar 

  2. Edmondston SJ, Singer KP, Day RE, Breidahl PD, Price RI (1994) In-vitro relationships between vertebral body density, size, and compressive strength in the elderly thoracolumbar spine. Clin Biomech (Bristol, Avon) 9(3):180–186

    Article  CAS  Google Scholar 

  3. Gallagher S, Marras WS, Litsky AS, Burr D, Landoll J, Matkovic V (2007) A comparison of fatigue failure responses of old versus middle-aged lumbar motion segments in simulated flexed lifting. Spine (Phila Pa 1976) 32(17):1832–1839

    Article  Google Scholar 

  4. Campbell-Kyureghyan N, Jorgensen M, Burr D, Marras W (2005) The prediction of lumbar spine geometry: method development and validation. Clin Biomech 20(5):455–464

    Article  Google Scholar 

  5. Chaffin DB (1969) A computerized biomechanical model-development of and use in studying gross body actions. J Biomech 2(4):429–441

    Article  CAS  PubMed  Google Scholar 

  6. Hussain M, Natarajan RN, An HS (2010) Andersson GB (2010) Motion changes in adjacent segments due to moderate and severe degeneration in C5-C6 disc: a poroelastic C3-T1 finite element model study. Spine (Phila Pa 1976) 35(9):939–947

    Article  Google Scholar 

  7. Natarajan RN, Andersson GB (1999) The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading. Spine Phila Pa 1976 24(18):1873–1881

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt H, Reitmaier S (2013) Is the ovine intervertebral disc a small human one? J Mech Behav Biomed Mater 17:229–241

    Article  PubMed  Google Scholar 

  9. Robin S, Skalli W, Lavaste F (1994) Influence of geometrical factors on the behavior of lumbar spine segments: a finite element analysis. Eur Spine J 3(2):84–90

    Article  CAS  PubMed  Google Scholar 

  10. Niemeyer F, Wilke HJ, Schmidt H (2012) Geometry strongly influences the response of numerical models of the lumbar spine—a probabilistic finite element analysis. J Biomech 45(8):1414–1423

    Article  PubMed  Google Scholar 

  11. Errico TJ (2005) Lumbar disc arthroplasty. Clin Orthop Rel Res 435:106–117

    Article  Google Scholar 

  12. Zander T, Rohlmann A, Bergmann G (2009) Influence of different artificial disc kinematics on spine biomechanics. Clin Biomech (Bristol, Avon) 24(2):135–142

    Article  Google Scholar 

  13. Berry JL, Moran JM, Berg WS, Steffee AD (1987) A morphometric study of human lumbar and selected thoracic vertebrae. Spine (Phila Pa 1976) 12(4):362–367

    Article  CAS  Google Scholar 

  14. Hall LT, Esses SI, Noble PC, Kamaric E (1998) Morphology of the lumbar vertebral endplates. Spine (Phila Pa 1976) 23(14):1517–1522 (discussion 1522-1513)

    Article  CAS  Google Scholar 

  15. van der Houwen EB, Baron P, Veldhuizen AG, Burgerhof JGM, Ooijen PMA, Verkerke GJ (2010) Geometry of the intervertebral volume and vertebral endplates of the human spine. Ann Biomed Eng 38(1):33–40

    Article  PubMed  Google Scholar 

  16. Aharinejad S, Bertagnoli R, Wicke K, Firbas W, Schneider B (1990) Morphometric analysis of vertebrae and intervertebral discs as a basis of disc replacement. Am J Anat 189(1):69–76

    Article  CAS  PubMed  Google Scholar 

  17. Amonoo-Kuofi HS (1991) Morphometric changes in the heights and anteroposterior diameters of the lumbar intervertebral discs with age. J Anat 175:159–168

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Aydinlioglu A, Diyarbakirli S, Keles P (1999) Heights of the lumbar intervertebral discs related to age in Turkish individuals. Tohoku J Exp Med 188(1):11–22

    Article  CAS  PubMed  Google Scholar 

  19. Chen H, Jiang D, Ou Y, Zhong J, Lv F (2011) Geometry of thoracolumbar vertebral endplates of the human spine. Eur Spine J 20(11):1814–1820

    Article  PubMed  PubMed Central  Google Scholar 

  20. Colombini D, Occhipinti E, Grieco A, Faccini M (1989) Estimation of lumbar disc areas by means of anthropometric parameters. Spine (Phila Pa 1976) 14(1):51–55

    Article  CAS  Google Scholar 

  21. Farfan HF (1973) Mechanical disorders of the low back. Lea & Febiger, Philadelphia

    Google Scholar 

  22. Gilad I, Nissan M (1986) A study of vertebra and disc geometric relations of the human cervical and lumbar spine. Spine (Phila Pa 1976) 11(2):154–157

    Article  CAS  Google Scholar 

  23. Kang KS, Song K-S, Lee JS, Yang JJ, Song IS (2011) Comparison of radiographic and computed tomographic measurement of pedicle and vertebral body dimensions in Koreans: the ratio of pedicle transverse diameter to vertebral body transverse diameter. Eur Spine J 20(3):414–421

    Article  PubMed  Google Scholar 

  24. Karabekir HS, Gocmen-Mas N, Edizer M, Ertekin T, Yazici C, Atamturk D (2011) Lumbar vertebra morphometry and stereological assesment of intervertebral space volumetry: a methodological study. Ann Anat 193(3):231–236

    Article  PubMed  Google Scholar 

  25. Mahato NK (2011) Disc spaces, vertebral dimensions, and angle values at the lumbar region: a radioanatomical perspective in spines with L5-S1 transitions. J Neurosurg Spine 15(4):371–379

    Article  PubMed  Google Scholar 

  26. Nissan M, Gilad I (1984) The cervical and lumbar vertebrae—an anthropometric model. Eng Med 13(3):111–114

    Article  CAS  PubMed  Google Scholar 

  27. Panjabi MM, Goel V, Oxland T, Takata K, Duranceau J, Krag M, Price M (1992) Human lumbar vertebrae—quantitative three-dimensional anatomy. Spine (Phila Pa 1976) 17(3):299–306

    Article  CAS  Google Scholar 

  28. Postacchini F, Ripani M, Carpano S (1983) Morphometry of the lumbar vertebrae—an anatomic study in two caucasoid ethnic groups. Clin Orthop Relat Res 172:296–303

    Google Scholar 

  29. Seidel H, Pöpplau BM, Morlock MM, Pschel K, Huber G (2008) The size of lumbar vertebral endplate areas—prediction by anthropometric characteristics and significance for fatigue failure due to whole-body vibration. Int J Ind Ergonom 38(9–10):844–855

    Article  Google Scholar 

  30. Tan SH, Teo EC, Chua HC (2004) Quantitative three-dimensional anatomy of cervical, thoracic and lumbar vertebrae of Chinese Singaporeans. Eur Spine J 13(2):137–146

    Article  CAS  PubMed  Google Scholar 

  31. Tang R (2013) Morphometric analysis of the human lower lumbar intervertebral discs and vertebral endplates: experimental approach and regression models. Ph.D dissertation, Auburn University, USA

  32. Turk Z, Celan D (2004) Importance of intervertebral disc size in low back pain. Croat Med J 45(6):734–739

    PubMed  Google Scholar 

  33. van Schaik JJ, Verbiest H, van Schaik FD (1985) Morphometry of lower lumbar vertebrae as seen on CT scans: newly recognized characteristics. AJR 145(2):327–335

    Article  PubMed  Google Scholar 

  34. Wang Y, Battié MC, Videman T (2012) A morphological study of lumbar vertebral end- plates: radiographic, visual and digital measurements. Eur Spine J 21(11):2316–2323

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhou SH, McCarthy ID, McGregor AH, Coombs RR, Hughes SP (2000) Geometrical dimensions of the lower lumbar vertebrae—analysis of data from digitised CT images. Eur Spine J 9(3):242–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Biggemann M, Hilweg D, Brinckmann P (1988) Prediction of the compressive strength of vertebral bodies of the lumbar spine by quantitative computed tomography. Skeletal Radiol 17(4):264–269

    Article  CAS  PubMed  Google Scholar 

  37. Drerup B, Granitzka M, Assheuer J, Zerlett G (1999) Assessment of disc injury in subjects exposed to long-term whole-body vibration. Eur Spine J 8(6):458–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hansson T, Roos B, Nachemson A (1980) The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine (Phila Pa 1976) 5(1):46–55

    Article  CAS  Google Scholar 

  39. Hutton WC, Adams MA (1982) Can the lumbar spine be crushed in heavy lifting? Spine (Phila Pa 1976) 7(6):586–590

    Article  CAS  Google Scholar 

  40. Mosekilde L (1990) Sex differences in age-related changes in vertebral body size, density and biomechanical competence in normal individuals. Bone 11(2):67–73

    Article  CAS  PubMed  Google Scholar 

  41. Nachemson A (1960) Lumbar intradiscal pressure—experimental studies on post-mortem material. Acta Orthop Scand Suppl 43:1–104

    Article  CAS  PubMed  Google Scholar 

  42. Porter RW, Adams MA, Hutton WC (1989) Physical activity and the strength of the lumbar spine. Spine (Phila Pa 1976) 14(2):201–203

    Article  CAS  Google Scholar 

  43. Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17(3):205–216

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yamauchi T, Yamazaki M, Okawa A, Furuya T, Hayashi K, Sakuma T, Takahashi H, Yanagawa N, Koda M (2010) Efficacy and reliability of highly functional open source DICOM software (OsiriX) in spine surgery. J Clin Neurosci 17(6):756–759

    Article  PubMed  Google Scholar 

  45. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26(17):1873–1878

    Article  CAS  Google Scholar 

  46. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428

    Article  CAS  PubMed  Google Scholar 

  47. Portney LG, Watkins MP (2000) Foundations of clinical research: applications to practice, 2nd edn. Prentice Hall Inc, Upper Saddle River

    Google Scholar 

  48. Mayerhoefer ME, Stelzeneder D, Bachbauer W, Welsch GH, Mamisch TC, Szczypinski P, Weber M, Peters NH, Fruehwald-Pallamar J, Puchner S, Trattnig S (2012) Quantitative analysis of lumbar intervertebral disc abnormalities at 3.0 Tesla: value of T2 texture features and geometric parameters. NMR Biomed 25(6):866–872

    Article  PubMed  Google Scholar 

  49. Peoples RR, Perkins TG, Powell JW, Hanson EH, Snyder TH, Mueller TL, Orrison WW (2008) Whole-spine dynamic magnetic resonance study of contortionists: anatomy and pathology. J Neurosurg Spine 8(6):501–509

    Article  PubMed  Google Scholar 

  50. Bishop MD, Horn ME, Lott DJ, Arpan I, George SZ (2011) Magnitude of spinal muscle damage is not statistically associated with exercise-induced low back pain intensity. Spine J 11(12):1135–1142

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fortin M, Battié MC (2012) Quantitative paraspinal muscle measurements: inter-software reliability and agreement using OsiriX and ImageJ. Phys Ther 92(6):853–864

    Article  PubMed  Google Scholar 

  52. Karlo CA, Steurer-Dober I, Leonardi M, Pfirrmann CWA, Zanetti M, Hodler J (2010) MR/CT image fusion of the spine after spondylodesis: a feasibility study. Eur Spine J 19(10):1771–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Henderson L, Kulik G, Richarme D, Theumann N, Schizas C (2012) Is spinal stenosis assessment dependent on slice orientation? A magnetic resonance imaging study. Eur Spine J 21(suppl 6):s760–s764

    Article  PubMed  Google Scholar 

  54. White AA III, Panjabi MM (1990) Clinical biomechanics of the spine. J. B, Lippincott

    Google Scholar 

  55. Brinckmann P (1986) Injury of the annulus fibrosus and disc protrusions—an in vitro investigation on human lumbar discs. Spine (Phila Pa 1976) 11(2):149–153

    Article  CAS  Google Scholar 

  56. Lakshmanan P, Purushothaman B, Dvorak V, Schratt W, Thambiraj S, Boszczyk M (2012) Sagittal endplate morphology of the lower lumbar spine. Eur Spine J 21(suppl 2):s160–s164

    Article  PubMed  Google Scholar 

  57. He X, Liang A, Gao W, Peng Y, Zhang L, Liang G, Huang D (2012) The relationship between concave angle of vertebral endplate and lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 37(17):E1068–E1073

    Article  Google Scholar 

  58. Wang Y, Batti MC, Boyd SK, Videman T (2011) The osseous endplates in lumbar verte- brae: thickness, bone mineral density and their associations with age and disk degeneration. Bone 48(4):804–809

    Article  PubMed  Google Scholar 

  59. Adams MA, Bogduk N, Burton K, Dolan P (2002) The biomechanics of back Pain. Churchill Livingstone, Philadelphia

    Google Scholar 

  60. Zhao F-D, Pollintine P, Hole BD, Adams MA, Dolan P (2009) Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone 44(2):372–379

    Article  PubMed  Google Scholar 

  61. Gallagher S, Marras WS, Litsky AS, Burr D (2006) An exploratory study of loading and morphometric factors associated with specific failure modes in fatigue testing of lumbar motion segments. Clin Biomech (Bristol, Avon) 21(3):228–234

    Article  Google Scholar 

  62. Waters TR, Putz-Anderson V, Garg A, Fine LJ (1993) Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics 36(7):749–776

    Article  CAS  PubMed  Google Scholar 

  63. Andersson GB (1998) Epidemiology of low back pain. Acta Orthop Scand Suppl 281:28–31

    Article  CAS  PubMed  Google Scholar 

  64. Frobin W, Brinckmann P, Biggemann M, Tillotson M, Burton K (1997) Precision measurement of disc height, vertebral height and sagittal plane displacement from lateral radiographic views of the lumbar spine. Clin Biomech Bristol Avon 12(Suppl 1):S1–S63

    Article  Google Scholar 

  65. Gilsanz V, Loro ML, Roe TF, Sayre J, Gilsanz R, Schulz EE (1995) Vertebral size in elderly women with osteoporosis-mechanical implications and relationship to fractures. J Clin Invest 95(5):2332–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Law T, Anthony MP, Chan Q, Samartzis D, Kim M, Cheung KM, Khong PL (2013) Ultrashort time-to-echo MRI of the cartilaginous endplate: technique and association with intervertebral disc degeneration. J Med Imaging Radiat Oncol 57(4):427–434

    Article  PubMed  Google Scholar 

  67. Määttä JH, Kraatari M, Wolber L, Niinimäki J, Wadge S, Karppinen J, Williams FM (2014) Vertebral endplate change as a feature of intervertebral disc degeneration: a heritability study. Eur Spine J 23(9):1856–1862

    Article  PubMed  Google Scholar 

  68. Muftuler LT, Jarman JP, Yu HJ, Gardner VO, Maiman DJ, Arpinar VE (2015) Associa- tion between intervertebral disc degeneration and endplate perfusion studied by DCE-MRI. Eur Spine J 24(4):679–685

    Article  PubMed  Google Scholar 

  69. LeBlanc AD, Evans HJ, Schneider VS, Wendt RE III, Hedrick TD (1994) Changes in intervertebral disc cross-sectional area with bed rest and space flight. Spine (Phila Pa 1976) 19(7):812–817

    Article  CAS  Google Scholar 

  70. Kimura S, Steinbach GC, Watenpaugh DE, Hargens AR (2001) Lumbar spine disc height and curvature responses to an axial load generated by a compression device compatible with magnetic resonance imaging. Spine (Phila Pa 1976) 26(23):2596–2600

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Institute for Occupational Safety and Health (NIOSH) Pilot Project Research Training Grant (CDC-T42OH008414-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruoliang Tang.

Ethics declarations

Conflict of interest

None of the authors has any potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, R., Gungor, C., Sesek, R.F. et al. Morphometry of the lower lumbar intervertebral discs and endplates: comparative analyses of new MRI data with previous findings. Eur Spine J 25, 4116–4131 (2016). https://doi.org/10.1007/s00586-016-4405-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4405-8

Keywords

Navigation