Skip to main content
Log in

Physicochemical and structure-activity properties of piroxicam—a mini review

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

The neutral bidentate ligand coordinated to the metal ion through pyridyl-N and carbonyl of the amide moiety causes protonation/deprotonation equilibria (tautomerism) of piroxicam. The penetration of piroxicam through blood–brain barrier (BBB) may be by redox chemical delivery system linking it to the lipophilic dihydropyridine carrier creating a complex with carboxylic acid that transverses the BBB. The complex is enzymatically oxidized to the conic pyridinium salt. Subsequent cleavage of the drug from the pyridinium carrier leads to sustained drug delivery in the brain parenchyma. Brain uptake of piroxicam may be positively correlated with lipid solubility at high doses or negatively correlated with hydrogen bonding or due to damage to meninges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abraham MH, Chadha HS, Mitchell RC (1994) Hydrogen bonding 33. Factors that influence the distribution of solutes between blood and brain. J Pharm Sci 83:1257–1268

    Article  CAS  PubMed  Google Scholar 

  • Akogwu EL (2016) Effects of piroxicam on the pharmacokinetics of sulphadimedine in West African dwarf goats. University of Agriculture, Makurdi, Nigeria, MSc. Thesis

    Google Scholar 

  • Atherden LM (2005) Bentley and Driver’s Textbook of pharmaceutical chemistry, 8th ed. Oxford University Press, UK, p 916

    Google Scholar 

  • Auda SH, Ahmed MM, Abd El-Rasoul S, Saleh KI (2010) Formulation and physicochemical characterization of piroxicam containing polymer films. Bull Pharm Sci Assiut Univers 33(1):33–42

    CAS  Google Scholar 

  • Ballington DA, Laughinlin MM (2014) Pharmacology, 5u ed. MedTec, Scientific International Prt. Ltd, New Delhi, India, p 682

    Google Scholar 

  • Banerjee R, Sarkar M (2002) Spectroscopic studies of microenvironment dictated structural forms of piroxicam and meloxicam. J Luminese 99:255–263

    Article  CAS  Google Scholar 

  • Battista E (2012) Crash Course Pharmacology, 4th edition. Mosby Elsevier, China, p 236

    Google Scholar 

  • Begum SKR, Varma MM, Raju DB, Prassad RGSV, Phani AR, Jacob B, Salins PC (2012) Enhancement of dissolution rate of piroxicam by electro spinning technique. Adv Neural Sci Nano Sci Nanotechnol 3:045012 (4pp)

    Article  Google Scholar 

  • Bhattacharya P, Pandey AK, Paul S, Patnaik R, Yaragal DR (2013) Aquaporin-4 inhibition mediates piroxicam-induced neuro-protection against focal cerebral ischaema/perfusion injury in rodents. Plus One 8(9):1–13

    Google Scholar 

  • Bodor N, Farag HH, Brewster ME (1981) Sites-specific sustained release of drugs to the brain. Science 214(18):1370–1372

    Article  CAS  PubMed  Google Scholar 

  • Bodor N, Pakai I, Wu WM, Farag HH, Jonnalagadda S, Kawamura M, Simpkins J (1992) A strategy for delivering peptides into the central nervous system by sequential metabolism. Science 257:1698–1700

    Article  CAS  PubMed  Google Scholar 

  • Bordner J, Richards JA, Weeks P, Whipple EB (1984) Piroxicam monohydrate; a Zwitterion form, C15H13N3O4S.H2O. Acta Cryst 40:989–990

    Google Scholar 

  • Carty TJ, Eskra JD, Lombardino JG, Hoffman WW (1980) Piroxicam, a potent inhibitor of prostanglandin production in cell culture. Structure-activity study. Prostaglandins 19(1):51–59

    Article  CAS  PubMed  Google Scholar 

  • Cavaglioni A, Cini R (1997) The first crystal structure of a rhodium complex with the antileukemic drug purine-6-thione synthesis and molecular orbital investigation of new organorrhodium (11) compounds. J Chem Soc Dalton Trans 1149

  • Chakraborty H, Banerjee R, Sarkar M (2003) Incorporation of NSAIDs in micelles: implication of structural switch over in drug-membrane interaction. Biophysical Chem 104:315–325

    Article  CAS  Google Scholar 

  • Cheng HA, Choi HK (2000) Enhanced percutaneous absorption of piroxicam via salt formation with ethanolamines. Pharm Res 19(9):1–7

    CAS  Google Scholar 

  • Childs SL, Hardcastle KI (2007) Cocrystals of piroxicam with carboxylic acids. Cryst Growth Des 7(7):1291–1304

    Article  CAS  Google Scholar 

  • Christifis P, Katsanu M, Papakynakou A, Sanakis Y, Katsaros N (2005) Mononuclear metal complexes with piroxicam. Synthesis, structure and biological activity. J Inorganic Biochem 99(11):2197–2210

    Article  Google Scholar 

  • Cini R, Tamasi G, Defazio S, Hursthouse MB (2007) Unusual coordinating behaviour by three non-steroidal anti-inflammatory drugs from the piroxicam family towards copper (II). Synthesis, x-ray structure for copper (II)-isoxicam, -mctoxicam and cinnoxicam-derivative complexes, and cytotoxic activity for a copper (II)-piroxicam complex. J Inorgan Biochem 101(8):1140–1152

    Article  CAS  Google Scholar 

  • Cornford EM, Oldendorf WH (1986) Epilepsy and the blood brain barrier. Adv Neurol 44:787–812

    CAS  PubMed  Google Scholar 

  • Crivori P, Cruciani G, Carrupt P (2003) Predicting blood brain barrier permeation from three dimensional molecular structure. J Med Chem 39:4750–4755

    Google Scholar 

  • Demiralay EC, Yilmaz H (2012) Potentiomeric pKa determination of piroxicam and tenoxicam in acetonitrile-water binary mixtures. SDU J Sci (E – J) 7(1):34–44

    CAS  Google Scholar 

  • Deniger S, Hofmann T, Yeh J (2002) Predicting CNS permeability of drug molecules: comparison of neural network and support vector machine algorithms. J Comput Biol 9(6):849–861

    Article  Google Scholar 

  • Diaf K, El Bahri Z, Chafi N, Belarbi L, Mesti A (2012) Ethylcellulose, polycapro lactone and Eudragit matrices for controlled release of piroxicam from tablet and microspheres. Chem Pap 66(8):779–786

    Article  CAS  Google Scholar 

  • Dixon JS, Lacey LF, Pickup ME, Langley SJ, Page MC (1990) A lack of pharmacokinetic interaction between ramtidine and piroxicam. Eur J Clin Pharmacol 39:583–586

    Article  CAS  PubMed  Google Scholar 

  • Fabbri A, Cruccu G, Sperti P, Ridolfi M, Ciampani T, Leardi MG et al (1992) Piroxicam-induced analgesia: evidence for a central component which is not opioid mediated. Eperientia 48:1139–1142

    Article  CAS  Google Scholar 

  • Frank I, Grimme S, Peyerinhoff SD (1996) J Chem Phys 91:5694–5700

    Google Scholar 

  • Gid M, Douhal A (2008) Femtosecond dynamics of piroxicam structures in solutions. J Phys Chem 112(36):8231–8237

    Article  Google Scholar 

  • Golic L, Leban I (1987) Structure of methyl 4-hydroxy-2-methyl-2H-1, 2-benzothiazine-3-carboxylate 1, 1-dioxide. Acta Cryst 43:280–282

    Article  Google Scholar 

  • Goncalo M, Figueredo A, Tavares P, Ribeiro CAF, Teixera F, Baptista AP (1992) Photosensitivity to piroxicam: absence of cross-reaction with tenoxicam. Contact Dermatitis 27:287–290

    Article  CAS  PubMed  Google Scholar 

  • Gordon SM, Brahim JS, Rowan J, Kent A, Dionne RA (2002) Peripheral prostanoid levels and non-steroidal anti-inflammatory drug analgesia: replicate clinical trials in a tissue injury model. Clin Pharmacol Ther 72:175–183

    Article  CAS  PubMed  Google Scholar 

  • Janik M, Malarski Z, Mrozinski J, Wajcht J, Zborucki Z (1990) Influence of solvent effect on polymorphism of 4-hydroxy-2-methyl-N-2-pyridyl-2H-7, 2-benzothiazine-3-carboxamide-1, 1-dioxide (piroxicam). J Crystalograph Spectroscop Res 21(4):1–7

    Google Scholar 

  • Jayaselli J, Cheemla JMS, Geetha RDP, Pal S (2008) Derivatization of enolic OH of piroxicam: a comparative study on esters and sulfonates. J Braz Chem Soc 19(3):1–10

    Article  Google Scholar 

  • Kojic-Prodic B, Ruzic-Toros Z (1982) Structure of the anti-inflammatory drug 4-hydroxy-2-methyl-N-2-pyridyl-2H-1 6, 2-benzothiazine-3-carboxamide 1, 1-dioxide (piroxicam). Acta Cryt 38:2948–2951

    Article  Google Scholar 

  • Lichtenberger LM, Zhou Y, Jayaraman V, Doyen JR, O’Neil RG, Dial EJ, Vok DE (2012) Insight into NSAID-induced membrane alterations, pathogenesis and therapeutics: characterization of interaction of NSAIDs with phosphotidylcholine. Biochem Biophys Acta 1821:994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Wang WD, Wang W, Bai S, Dybowski C (2010) Influence of structure on the spectroscopic properties of the polymorphs of piroxicam. J Phys Chem 114(49):16641–16649

    Article  CAS  Google Scholar 

  • Lombardino JG, Lowe JA (2004) Discovery of piroxicam (1962–1980) from the following article: the role of the medicinal chemistry in drug discovery then and now. Nat Rev Drug Discov 3:853–862

    Article  CAS  PubMed  Google Scholar 

  • Lyer R, Iverson TM, Accordi A, Miller C (2002) A biological role for prokaryotic CIC chlorides channels. Nature 419:715–718

    Article  Google Scholar 

  • Lyn LY, Sze HW, Rajendran A, Adinarayana G, Dua K, Garg S (2011) Crystal modifications and dissolution rate of piroxicam. Acta Pharm 61:391–402

    Article  CAS  PubMed  Google Scholar 

  • Manewka J, Szczesntak-Siega B, Pola A, Sroda-Pomianeck K, Malinka W, Michalak K (2014) The interaction of new piroxicam analogues with lipid-bilayers—a calorimetric and fluorescience spectroscopic study. Acta Poloniae Pharm Drug Res 71(6):1004–1012

    Google Scholar 

  • Mckerrow KJ, Greig DE (1986) Piroxicam-induced photosensitive dermatitis. J Acad Dermatol 15:1237–1241

    Article  CAS  Google Scholar 

  • Milone GM, Twooney TM (1980) The analgesic properties of piroxicam in animals and correlation with experimentally determined plasma levels. Agents Action 10(1-2):31–37

    Article  Google Scholar 

  • Miranda MA, Vargas F, Serrano G (1991) Photodegradation of piroxicam under aerobic conditions. The photochemical keys of the piroxicam enigma? J Photochemc Photobiol B Biol 8:199–202

    Article  CAS  Google Scholar 

  • Moghimipour E, Alidabbagh M, Zarif F (2009) Characterization and in vitro evaluation of piroxicam suppositories. Asian J Pharm Clin Res 2(3):92–98

    CAS  Google Scholar 

  • Pardridge WM (1988) Recent advances in blood brain-barrier transport. Annu Rev Pharmacol Toxicol 28:25–39

    Article  CAS  PubMed  Google Scholar 

  • Roskos LK, Boudinot FD (2006) Effects of dose and sex on the pharmacokinetics of piroxicam in the rat. Biopharm Drug Dispos 11:215–225

    Article  Google Scholar 

  • Rowlinson SW, Kiefer JR, Prusakiewicz JJ, Pawlitz JL, Kozak KR, Kalzutkar AS, Stallings WC, Kurumbai RG, Marnett LH (2003) A novel mechanism of cyclo-oxygenase inhibition involving interactions with ser-530 and tyr-385. J Biol Chem 278(46):45768–45769

    Article  Google Scholar 

  • Saganuwan SA (2015) Neurological effects of piroxicam in female monogastric animals. Book of Abstract Pharma-Nutrition Conference, Pennsylvania, 14-17 April, 2015

  • Saganuwan SA (2015b) Fluphenazine (a typical antipsychotic) has a purgative effect on turkey. J Neurochem 1:112–222

    Google Scholar 

  • Saganuwan SA (2015c) Neurological effects of piroxicam (pain reliever) may be structure activity based. Cephalalgia 35(65):76–77

    Google Scholar 

  • Saganuwan SA, Agbaji OA (2015) Acute toxicity study of piroxicam in female monogastric animals. Book of Abstract 88th Japanese Pharmacological Society, 13-17th March 2015, Nagoya Japan

  • Salgado-Moran G, Gerli-Candia L, Martinez-Araya JI, Tagle R-R, Glossman-Mutnike D (2013) Oxicams: computational thermometrical parameters and solubility. Int J Pharm Biosci 4(2):374–382

    CAS  Google Scholar 

  • Schinkel AH (1999) P-glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deho Rev 36(2 -3):179–184

    Article  CAS  Google Scholar 

  • Shah SP (2003) Drug delivery to the central nervous system: a review. Pharm Pharm Sci 6(2):252–273

    Google Scholar 

  • Sheth AR, Lubach JW, Murison EJ, Muller FX, Grant DJW (2005) Mechanochromism of piroxicam accompanied by intermolecular proton transfer probed by spectroscopic methods and solid-phase changes. J Am Chem Soc 127(18):6641–6651

    Article  CAS  PubMed  Google Scholar 

  • Takaca-Novak K, Kokosi J, Podanyi B, Nozal B, Tsai R-S, Lisa G, Carmpt P-A, Testa B (2004) Microscopic pronation/deprotonation equilibria of the anti-inflammatory agent piroxicam. Halvetica Chem Acta 78(3):553–562

    Article  Google Scholar 

  • Tantishaiyakul V, Kaeanopparat N, Inzkataworrwong S (1999) Properties of solid dispersions of piroxicam in polyvinylpyrrolidine. Int J Pharm 181(2):143–151

    Article  CAS  PubMed  Google Scholar 

  • Tripathi KD (2003) Essentials of Medical Pharmacology, 7th ed. Jaypee Brothers Medical Publishers, New Delhi, p 1002

    Google Scholar 

  • Vrecer F, Vibinc M, Meden A (2003) Characterization of piroxicam crystal modifications. Int J Pharm 256(1-2):3–15

    Article  CAS  PubMed  Google Scholar 

  • WHO (1985) Brain-specific analogues of centrally acting ammes. Appl World Health Org 1-90

  • Zayed MA, El-Dien N, Mohamed GG (2004) Structure investigation, spectral, thermal and mass characterisation of piroxicam and metal complexes. Spectrochemica Acta Part A: Molecul. BIomolecul Spectrosc 60(12):2843–2852

    Article  CAS  Google Scholar 

Download references

Acknowledgment

I sincerely thank the head of the Department of Animal Health and Production, College of Veterinary Medicine, University of Agriculture, Makurdi, for his unflinching support. The contributions of Adamu Saleh of the Department of Veterinary Physiology, Pharmacology and Biochemistry, University of Agriculture, Makurdi, and Mr Kehinde Ola Emmanuel of the National Open University, Makurdi, are highly appreciable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saganuwan Alhaji Saganuwan.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This study was funded using my monthly salaries.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saganuwan, S.A. Physicochemical and structure-activity properties of piroxicam—a mini review. Comp Clin Pathol 25, 941–945 (2016). https://doi.org/10.1007/s00580-016-2284-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-016-2284-3

Keywords

Navigation