Skip to main content
Log in

Mycorrhizas in South American Ericaceae

  • REVIEW
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Mycorrhizal symbioses (mycorrhizas) of Ericaceae, including ericoid mycorrhiza (ErM), have been mainly studied in the Northern Hemisphere, although the highest diversity of ericaceous plants is located in the Southern Hemisphere, where several regions remain largely unexplored. One of them is South America, which harbors a remarkably high diversity of Ericaceae (691 species and 33 genera) in a wide range of environmental conditions, and a specific mycorrhizal type called cavendishioid. In this review, we compile all available information on mycorrhizas of Ericaceae in South America. We report data on the mycorrhizal type and fungal diversity in 17 and 11 ericaceous genera, respectively. We show that South American Ericaceae exhibit a high diversity of habitats and life forms and that some species from typical ErM subfamilies may also host arbuscular mycorrhiza. Also, a possible geographical pattern in South American ErM fungal communities is suggested, with Sebacinales being the dominant mycorrhizal partners of the Andean clade species from tropical mountains, while archetypal ErM fungi are common partners in southern South America species. The gathered information challenges some common assumptions about ErM and suggests that focusing on understudied regions would improve our understanding of the evolution of mycorrhizal associations in this intriguing family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albornoz FE, Dixon KW, Lambers H (2021) Revisiting mycorrhizal dogmas: are mycorrhizas really functioning as they are widely believed to do? Soil Ecology Letters 3:73–82

    Article  CAS  Google Scholar 

  • Almario J, Jeena G, Wunder J, Langen G, Zuccaro A, Coupland G, Bucher M (2017) Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proceedings of the National Academy of Sciences, USA 114:E9403–E9412

    Article  CAS  Google Scholar 

  • Antonelli A, Nylander JAA, Persson C, Sanmartín I (2009) Tracing the impact of the Andean uplift on neotropical plant evolution. Proceedings of the National Academy of Sciences, USA 106:9749–9754

    Article  CAS  Google Scholar 

  • Baba T, Hirose D, Sasaki N, Watanabe N, Kobayashi N, Kurashige Y, Karimi F, Ban T (2016) Mycorrhizal formation and diversity of endophytic fungi in hair roots of Vaccinium oldhamii Miq. in Japan. Microbes and environments, ME16011

  • Baião EB, Kasuya CM (2007) Associações micorrízicas em Agarista Coriifolia (Ericaceae). 58º Congresso Nacional de Botanica-São Paulo.

  • Bellgard SE (1991) Mycorrhizal associations of plant species in Hawkesbury sandstone vegetation. Austral Journal of Botany 39:357–364

    Article  Google Scholar 

  • Bermudez D, Benzing DH (1989) Fungi in neotropical epiphyte roots. BioSystems 23:65–73

    Article  Google Scholar 

  • Besen K (2017) Autoecologia de Gaylussacia brasiliensis (Ericaceae), em restinga da Ilha de Santa Catarina, sul do Brasil. PhD Thesis. Universidade Federal de Santa Catarina. Florianópolis, Brazil

  • Bidartondo MI, Bruns TD (2001) Extreme specificity in epiparasitic Monotropoideae (Ericaceae): widespread phylogenetic and geographic structure. Mol Ecol 10:2285–2295

    Article  CAS  PubMed  Google Scholar 

  • Bidartondo MI, Bruns TD (2002) Fine-level mycorrhizal specificity in the Monotropoideae (Ericaceae): specificity for fungal species groups. Mol Ecol 11:557–569

    Article  CAS  PubMed  Google Scholar 

  • Bougoure DS, Parkin PI, Cairney JWG, Alexander IJ, Anderson IC (2007) Diversity of fungi in hair roots of Ericaceae varies along a vegetation gradient. Mol Ecol 16:4624–4636

    Article  CAS  PubMed  Google Scholar 

  • Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115

    Article  PubMed  Google Scholar 

  • Bruzone MC, Fontenla SB, Vohník M (2015) Is the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae absent in the Southern Hemisphere’s Ericaceae? A case study on the diversity of root mycobionts in Gaultheria spp. from northwest Patagonia. Argentina Mycorrhiza 25:25–40

    Article  PubMed  Google Scholar 

  • Bruzone MC, Fehrer J, Fontenla SB, Vohník M (2017) First record of Rhizoscyphus ericae in Southern Hemisphere’s Ericaceae. Mycorrhiza 27:147–163

    Article  PubMed  Google Scholar 

  • Bueno CG, Marin C, Silva-Flores P, Aguilera P, Godoy R (2017) Think globally, research locally: emerging opportunities for mycorrhizal research in South America. New Phytol 215:1306–1309

    Article  Google Scholar 

  • Cairney JWG, Meharg AA (2003) Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. Eur J Soil Sci 54:735–740

    Article  Google Scholar 

  • Carrillo R, Guerrero J, Rodríguez M, Meriño-Gergichevich C (2015) Colonization of blueberry (Vaccinium corymbosum) plantlets by ericoid mycorrhizae under nursery conditions. Ciencia e Investigación Agraria 42:365–374

    Article  Google Scholar 

  • Castillo CG, Borie F, Godoy R, Rubio R, Sieverding E (2006) Diversity of mycorrhizal plant species and arbuscular mycorrhizal fungi in evergreen forest, deciduous forest and grassland ecosystems of Southern Chile. Journal of Applied Botany and Food Quality 80:40–47

    Google Scholar 

  • Chaurasia B, Pandey A, Palni L (2005) Distribution, colonization and diversity of arbuscular mycorrhizal fungi associated with central Himalayan rhododendrons. For Ecol Manage 207:315–324

    Article  Google Scholar 

  • Daghino S, Martino E, Perotto S (2016) Model systems to unravel the molecular mechanisms of heavy metal tolerance in the ericoid mycorrhizal symbiosis. Mycorrhiza 26:263–274

    Article  CAS  PubMed  Google Scholar 

  • Das P, Kayang H (2012) Root fungal associations in Gaultheria fragrantissima. Journal of Agricultural Technology 8:133–141

    CAS  Google Scholar 

  • Delavaux CS, Smith-Ramesh LM, Kuebbing SE (2017) Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology 98:2111–2119

    Article  PubMed  Google Scholar 

  • DeMars BG, Boerner REJ (1996) Vesicular arbuscular mycorrhizal development in the Brassicaceae in relation to plant life span. Flora 191:179–189

    Article  Google Scholar 

  • Fehrer J, Réblová M, Bambasová V, Vohník M (2019) The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: phylogenetic and experimental evidence. Stud Mycol 92:195–225

    Article  CAS  PubMed  Google Scholar 

  • Fontenla S, Godoy R, Rosso P, Havrylenko (1998) Root associations in Austrocedrus forests and seasonal dynamics of arbuscular mycorrhizas. Mycorrhiza 8:29–33

    Article  Google Scholar 

  • Freudenstein JV, Broe BB, Feldenkris ER (2016) Phylogenetic relationships at the base of Ericaceae: implications for vegetative and mycorrhizal evolution. Taxon 65:794–804

    Article  Google Scholar 

  • Fukuchi S, Obase K, Tamai Y, Yajima T, Miyamoto T (2011) Vegetation and colonization status of mycorrhizal and endophytic fungi in plant species on acidic barren at crater basin of volcano Esan in Hokkaido, Japan. Eurasian Journal of Forest Research 14:1–11

    Google Scholar 

  • Geml J, Pastor N, Fernandez L, Pacheco S, Semenova TA, Becerra AG, Wicaksono CY, Nouhra ER (2014) Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol Ecol 23:2452–2472

    Article  CAS  PubMed  Google Scholar 

  • Genre A, Lanfranco L, Perotto S, Bonfante P (2020) Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol 18:649–660

    Article  CAS  PubMed  Google Scholar 

  • Godoy R, Marín C (2019) Chapter 16: Mycorrhizal studies in temperate rainforests of Southern Chile. In: Pagano MC, Lugo MA (eds) Mycorrhizal fungi in South America. Springer, Switzerland, pp 315–341

    Chapter  Google Scholar 

  • Godoy R, Romero R, Carrillo R (1994) Estatus micotrófico de la flora vascular en bosques de coníferas nativas del sur de Chile. Rev Chil Hist Nat 67:209–220

    Google Scholar 

  • Gorzelak MA, Hambleton S, Massicotte HB (2012) Community structure of ericoid mycorrhizas and root-associated fungi of Vaccinium membranaceum across an elevation gradient in the Canadian Rocky Mountains. Fungal Ecol 5:36–45

    Article  Google Scholar 

  • Guerrero E (1996) Survey of mycorrhiza in a high Andean Paramo. Proceedings of the fourth European Symposium on Mycorrizas. 121–124

  • John TS (1980) Uma lista de espécies de plantas tropicais brasileiras naturalmente infectadas com micorriza vesicular-arbuscular. Acta Amazon 10:229–234

    Article  Google Scholar 

  • Kohout P, Tedersoo L (2017) Effect of soil moisture on root-associated fungal communities of Erica dominans in Drakensberg mountains in South Africa. Mycorrhiza 27:397–406

    Article  PubMed  Google Scholar 

  • Kohout P (2017) Biogeography of ericoid mycorrhiza. in ed. Tedersoo L. Biogeography of mycorrhizal symbiosis. Switzerland: Springer. 179–193

  • Kolařík M, Vohník M (2018) When the ribosomal DNA does not tell the truth: the case of the taxonomic position of Kurtia argillacea, an ericoid mycorrhizal fungus residing among Hymenochaetales. Fungal Biol 122:1–18. https://doi.org/10.1016/j.funbio.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  • Kong A, Cifuentes J, Estrada-Torres A, Guzmán-Dávalos L, Garibay-Orijel R (2015) Russulaceae associated with mycoheterotroph Monotropa uniflora (Ericaceae) in Tlaxcala, Mexico: a phylogenetic approach. Cryptogam, Mycol 36:479–512

    Article  Google Scholar 

  • Konno K, Akasaka M, Koshido C, Katayama ON, Spake R, Amano T (2020) Ignoring non-English-language studies may bias ecological meta-analyses. Ecol Evol 10:6373–6384

    Article  PubMed  PubMed Central  Google Scholar 

  • Koske RE, Gemma JN, Englander L (1990) Vesicular-arbuscular mycorrhizae in Hawaiian Ericales. Am J Bot 77:64–68

    Google Scholar 

  • Kottke I, Haug I, Setaro S, Suárez JP, Weiß M, Preußing M, Nebel M, Oberwinkler F (2008) Guilds of mycorrhizal fungi and their relation to trees, ericads, orchids and liverworts in a neotropical mountain rain forest. Basic Appl Ecol 9:13–23

    Article  CAS  Google Scholar 

  • Kron KA, Luteyn J (2005) Origins and biogeographic patterns in Ericaceae: new insights from recent phylogenetic analyses. Biologiske Skrifter 55:479–500

    Google Scholar 

  • Kron KA, Judd WS, Stevens PF, Crayn DM, Anderberg AA, Gadek PA, Quinn CJ, Luteyn JL (2002) Phylogenetic classification of Ericaceae: molecular and morphological evidence. Botanical Reviews 68:335–423

    Article  Google Scholar 

  • Lallemand F, Gaudeul M, Lambourdiere J, Matsuda Y, Hashimoto Y, Selosse MA (2016) The elusive predisposition to mycoheterotrophy in Ericaceae. New Phytol 212:314–319

    Article  PubMed  Google Scholar 

  • Lancheros HO (2012) Caracterización de las micorrizas nativas en agraz Vaccinium meridionale Swartz y evaluación de su efecto sobre el crecimiento plantular. Master Thesis. Universidad Nacional de Colombia, Bogotá, Colombia

  • Leake JR (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216

    Article  PubMed  Google Scholar 

  • Linder HP (2003) The radiation of the Cape flora, southern Africa. Biol Rev 78:597–638

    Article  CAS  PubMed  Google Scholar 

  • Luebert F, Weigend (2014) Phylogenetic insights into Andean plant diversification. Frontiers in Ecology and Evolution 2.https://doi.org/10.3389/fevo.2014.00027

  • Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria, Santiago de Chile

    Google Scholar 

  • Luteyn JL (2002) Diversity, adaptation, and endemism in neotropical Ericaceae: biogeographical patterns in the Vaccinieae. Botanical Reviews 68:55–87

    Article  Google Scholar 

  • Maherali H, Oberle B, Stevens PF, Cornwell WK, McGlinn DJ (2016) Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am Nat 188:E113–E125

    Article  PubMed  Google Scholar 

  • Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS (2016) Unearthing the roots of ectomycorrhizal symbioses. Nat Rev Microbiol 14:760–773

    Article  CAS  PubMed  Google Scholar 

  • Martino E, Morin E, Grelet GA, Kuo A, Kohler A, Daghino S, Barry KW, Cichocki N, Clum A, Dockter RB (2018) Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol 217:1213–1229

    Article  CAS  PubMed  Google Scholar 

  • Massicotte HB, Melville LH, Peterson RL (2005) Structural characteristics of root-fungal interactions for five ericaceous species in eastern Canada. Can J Bot 83:1057–1064

    Article  Google Scholar 

  • Menoyo E, Becerra AG, Renison D (2007) Mycorrhizal associations in Polylepis woodlands of Central Argentina. Can J Bot 85:526–531

    Article  Google Scholar 

  • Merckx V (2013) Mycoheterotrophy, the biology of plants living on fungi. Springer, Berlin, Germany

    Book  Google Scholar 

  • Middleton DJ (1991) Infrageneric classification of the genus Gaultheria L. Ericaceae. Bot J Linn Soc 106:229–258

    Article  Google Scholar 

  • Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A, Sánchez-García M, Morin E, Andreopoulos B, Barry KW, Bonito G et al (2020) Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat Commun 11:5125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mnasri M, Janoušková M, Rydlová J, Abdelly C, Ghnaya T (2017) Comparison of arbuscular mycorrhizal fungal effects on the heavy metal uptake of a host and a non-host plant species in contact with extraradical mycelial network. Chemosphere 171:476–484

    Article  CAS  PubMed  Google Scholar 

  • Mujica MI, Bueno GC, Duchicela J, Marin C (2019) Strengthening mycorrhizal research in South America. New Phytol 224:563–567

    Article  PubMed  Google Scholar 

  • Muñoz G, Orlando J, Zúñiga-Feest A (2021) Plants colonizing volcanic deposits: root adaptations and effects on rhizosphere microorganisms. Plant Soil 461:265–279

    Article  Google Scholar 

  • Neri de Almeida AF (2019) Fungos micorrízicos arbusculares em Gaylussacia brasiliensis (Spreng.) Meissner em Área de Restinga. Master thesis. Universidade Federal de Santa Catarina, Florianópolis, Brazil

  • Neyland R, Hennigan MK (2004) A cladistic analysis of Monotropa uniflora (Ericaceae) inferred from large ribosomal subunit (26S) rRNA gene sequences. Castanea 69:265–271

    Article  Google Scholar 

  • Nuñez MA, Amano T (2021) Monolingual searches can limit and bias results in global literature reviews. Nature Ecology and Evolution 5:264

    Article  PubMed  Google Scholar 

  • Obase K, Matsuda Y, Ito S (2013) Enkianthus campanulatus (Ericaceae) is commonly associated with arbuscular mycorrhizal fungi. Mycorrhiza 23:199–208

    Article  CAS  PubMed  Google Scholar 

  • Oliva SR, Mingorance MD, Leidi EO (2012) Tolerance to high Zn in the metallophyte Erica andevalensis Cabezudo and Rivera. Ecotoxicology 21

  • Pacheco Flores A, Barcos-Arias M, Naranjo-Morán J, Peña-Tapia D, Moreira-Gómez R (2022) Ericaceous plants: a review for the bioprospecting of ericoid mycorrhizae from Ecuador. Diversity 14:648

    Article  Google Scholar 

  • Pedraza-Peñalosa P, Luteyn JL (2015) Andean Vaccinium (Ericaceae: Vaccinieae): seven new species from South America. Brittonia 63:257–275

    Article  Google Scholar 

  • Perotto S, Daghino S, Martino E (2018) Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? New Phytol 220:1141–1147

    Article  PubMed  Google Scholar 

  • POWO (2023) Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/ Retrieved 8 May 2023

  • Rains KC, Nadkarni NM, Bledsoe CS (2003) Epiphytic and terrestrial mycorrhizas in a lower mountain Costa Rican cloud forest. Mycorrhiza 13:257–264

    Article  PubMed  Google Scholar 

  • Rice AV, Currah RS (2006) Oidiodendron maius: Saprobe in Sphagnum peat, mutualist in ericaceous roots? In: Schulz et al (eds) Microbial root endophytes. Switzerland: Springer. 227–246

  • Richard S, Millot M, Gardes SMA (2005) Diversity and structuration by hosts of the below-ground mycorrhizal community in an old-growth Mediterranean forest dominated by Quercus ilex L. New Phytol 166:1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Riess K, Oberwinkler F, Bauer R, Garnica S (2014) Communities of endophytic Sebacinales associated with roots of herbaceous plants in agricultural and grassland ecosystems are dominated by Serendipita herbamans sp. nov. PLoS ONE 9: e94676

  • Santos OM, De Oliveira NC, de Nováis RF (1995) Observações preliminares sobre fungos micorrízicos vesículo-arbusculares em plantas crescendo em dunas na Bahia. Revista Ceres 42:191–202

    Google Scholar 

  • Sarmiento D (2020) Caracterización de rasgos florísticos y micorrizales de plantas dominantes de pajonales mixtos en el Páramo de Guerrero, Cundinamarca, Colombia. Undergraduate thesis. Universidad de Los Andes, Colombia

  • Schwery O, Onstein RE, Bouchenak-Khelladi Y, Xing Y, Carter RJ, Linder HP (2015) As old as the mountains: the radiations of the Ericaceae. New Phytol 207:355–367

    Article  PubMed  Google Scholar 

  • Selosse MA, Setaro S, Glatard F, Richard F, Urcelay C, Weiß M (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878

    Article  CAS  PubMed  Google Scholar 

  • Selosse MA, Dubois MP, Alvarez N (2009) Do Sebacinales commonly associate with plant roots as endophytes? Mycol Res 113:1062–1069

    Article  CAS  PubMed  Google Scholar 

  • Selosse MA, Petrolli R, Mujica MI, Laurent L, Perez-Lamarque B, Figura T, Bourceret A, Jacquemyn H, Li T, Gao J et al (2022) The Waiting Room Hypothesis revisited by orchids: were orchid mycorrhizal fungi recruited among root endophytes? Ann Bot 129:259–270

    Article  PubMed  Google Scholar 

  • Setaro S, Weiß M, Oberwinkler F, Kottke I (2006a) Sebacinales form ectendomycorrhizas with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. New Phytol 169:355–365

    Article  CAS  PubMed  Google Scholar 

  • Setaro S, Kottke I, Oberwinkler F (2006b) Anatomy and ultrastructure of mycorrhizal associations of neotropical Ericaceae. Mycol Prog 5:243–254

    Article  Google Scholar 

  • Setaro S, Garnica S, Herrera PI, Suárez JP, Göker MA (2012) A clustering optimization strategy to estimate species richness of Sebacinales in the tropical Andes based on molecular sequences from distinct DNA regions. Biodivers Conserv 21:2269–2285

    Article  Google Scholar 

  • Setaro S, Kron K (2011) Neotropical and North American Vaccinioideae (Ericaceae) share their mycorrhizal Sebacinales-an indication for concerted migration? PLoS Curr. 3, RRN1227

  • Setaro SD, Suárez JP, Herrera P, Cruz D, Kottke I (2013) Distinct but closely related Sebacinales form mycorrhizae with coexisting Ericaceae and Orchidaceae in a Neotropical Mountain Area. In Piriformospora indica; Springer: Berlin/Heidelberg, Germany, 81–105.

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press and Elsevier, London

    Google Scholar 

  • Soudzilovskaia NA, Vaessen S, Barcelo M, He J, Rahimlou S, Abarenkov K, Brundrett MC, Gomes SIF, Merckx V, Tedersoo L (2020) FungalRoot: global online database of plant mycorrhizal associations. New Phytol 227:955–966

    Article  PubMed  Google Scholar 

  • Strullu-Derrien C, Selosse MA, Kenrick P, Martin FM (2018) The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytol 220:1012–1030

    Article  PubMed  Google Scholar 

  • Tedersoo L, Brundrett M (2017) Chapter 19: Evolution of ectomycorrhizal symbiosis in plants. In: Tedersoo L (ed) Biogeography of mycorrhizal symbiosis, Ecological Studies 230. Springer, Switzerland, pp 407–467

    Chapter  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Zobel M (2020) How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223

  • Teste FP, Jones MD, Dickie IA (2020) Dual-mycorrhizal plants: their ecology and relevance. New Phytol 225:1835–1851

    Article  PubMed  Google Scholar 

  • Urcelay C (2002) Co-occurrence of three fungal root symbionts in Gaultheria poeppiggi DC in Central Argentina. Mycorrhiza 12:89–92

    Article  PubMed  Google Scholar 

  • Urgiles N, Haug I, Setaro S, Aguirre N (2016) Introduction to Mycorrhizas in the tropics with emphasis on the Montane Forest in Southern Ecuador. Universidad Nacional de Loja, Ecuador

    Google Scholar 

  • van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  Google Scholar 

  • Van Geel M, Jacquemyn H, Peeters G, van Acker K, Honnay O, Ceulemans T (2020) Diversity and community structure of ericoid mycorrhizal fungi in European bogs and heathlands across a gradient of nitrogen deposition. New Phytol 228:1640–1651

    Article  PubMed  Google Scholar 

  • Varma A, Sherameti I, Tripathi S, Prasad R, Das A, Sharma M, Bakshi M, Johnson JM, Bhardwaj S, Arora M et al (2012) The symbiotic fungus Piriformospora indica: review. In: Hock B (ed) The Mycota, vol IXB – fungal associations, 2nd edn. Springer, Berlin, Germany, pp 231–254

    Chapter  Google Scholar 

  • Veiga RSL, Howard K, van der Heijden MGA (2012) No evidence for allelopathic effects of arbuscular mycorrhizal fungi on the non-host plant Stellaria media. Plant Soil 360:319–331

    Article  CAS  Google Scholar 

  • Veiga RSL, Faccio A, Genre A, Pieterse CM, Bonfante P, van der Heijden MGA (2013) Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant, Cell Environ 36:1926–2193

    Article  PubMed  Google Scholar 

  • Vohník M (2020) Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation. Mycorrhiza 30:671–695

    Article  PubMed  PubMed Central  Google Scholar 

  • Vohník M, Sadowsky JJ, Kohout P et al (2012) Novel root-fungus symbiosis in Ericaceae: sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales. PLoS ONE 7:e39524. https://doi.org/10.1371/journal.pone.0039524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vohník M, Mrnka L, Lukešová T, Bruzone MC, Kohout P, Fehrer J (2013) The cultivable endophytic community of Norway spruce ectomycorrhizae from microhabitats lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecol 6:281–292

    Article  Google Scholar 

  • Vohník M, Pánek M, Fehrer J, Selosse M-A (2016) Experimental evidence of ericoid mycorrhizal potential within Serendipitaceae (Sebacinales). Mycorrhiza 26:831–846

    Article  PubMed  Google Scholar 

  • Vohník M, Figura T, Réblová M (2022) Hyaloscypha gabretae and Hyaloscypha gryndleri spp. nov. (Hyaloscyphaceae, Helotiales), two new mycobionts colonizing conifer, ericaceous and orchid roots. Mycorrhiza 32:105–122

    Article  PubMed  Google Scholar 

  • Vohník M, Bruzone MC, Knoblochová T, Fernández NV, Kolaříková Z, Větrovský T, Fontenla SB (2023) Exploring structural and molecular diversity of Ericaceae hair root mycobionts: a comparison between Northern Bohemia and Argentine Patagonia. Mycorrhiza 33:425–447

    Article  PubMed  Google Scholar 

  • Weiss M, Waller F, Zuccaro A, Selosse M-A (2016) Sebacinales—one thousand and one interactions with land plants. New Phytol 211:20–40

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

MIM thanks ANID – Fondecyt postdoc for funding support (grant # 3200774). MAS thanks Institut Universitaire de France for the support. We are deeply thankful for the comments of anonymous reviewers on earlier versions of this paper. HH acknowledges the support of the Fondo de Fomento al Desarrollo Científico y Tecnológico, grant number [ID23I10303].

Funding

Agencia Nacional de Investigación y Desarrollo,3200774

Author information

Authors and Affiliations

Authors

Contributions

MIM conceived and designed the study. Material preparation and data collection were performed by MIM, CSS, and MC. The first draft of the manuscript was written by all authors. MIM and MAS discussed and edited the first version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to María Isabel Mujica.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 661 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mujica, M.I., Herrera, H., Cisternas, M. et al. Mycorrhizas in South American Ericaceae. Mycorrhiza 34, 1–18 (2024). https://doi.org/10.1007/s00572-024-01141-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-024-01141-z

Keywords

Navigation