Skip to main content

Advertisement

Log in

Soil spore bank communities of ectomycorrhizal fungi in endangered Chinese Douglas-fir forests

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Chinese Douglas-fir (Pseudotsuga sinensis) is an endangered Pinaceae species found in several isolated regions of China. Although soil spore banks of ectomycorrhizal (ECM) fungi can play an important role in seedling establishment after disturbance, such as in the well-known North American relative (Pseudotsuga menziesii), we have no information about soil spore bank communities in relict forests of Chinese Douglas-fir. We conducted bioassays of 73 soil samples collected from three Chinese Douglas-fir forests, using North American Douglas-fir as bait seedlings, and identified 19 species of ECM fungi. The observed spore bank communities were significantly different from those found in ECM fungi on the roots of resident trees at the same sites (p = 0.02). The levels of potassium (K), nitrogen (N), organic matter, and the pH of soil were the dominant factors shaping spore bank community structure. A new Rhizopogon species was the most dominant species in the spore banks. Specifically, at a site on Sanqing Mountain, 22 of the 57 surviving bioassay seedlings (representing 21 of the 23 soil samples) were colonized by this species. ECM fungal richness significantly affected the growth of bioassay seedlings (R 2 = 0.20, p = 0.007). Growth was significantly improved in seedlings colonized by Rhizopogon or Meliniomyces species compared with uncolonized seedlings. Considering its specificity to Chinese Douglas-fir, predominance in the soil spore banks, and positive effect on host growth, this new Rhizopogon species could play critical roles in seedling establishment and forest regeneration of endangered Chinese Douglas-fir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alzetta C, Scattolin L, Scopel C, Accordi SM (2012) The ectomycorrhizal community in urban linden trees and its relationship with soil properties. Trees 26(3):751–767

    Article  Google Scholar 

  • Baar J, Horton TR, Kretzer AM, Bruns TD (1999) Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand-replacing wildfire. New Phytol 143(2):409–418

    Article  Google Scholar 

  • Baier R, Ingenhaag J, Blaschke H, Göttlein A, Agerer R (2006) Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Piceaabies [L.] Karst.) stand of the Bavarian Limestone Alps. Mycorrhiza 16(3):197–206

    Article  PubMed  Google Scholar 

  • Barker JS, Simard SW, Jones MD, Durall DM (2013) Ectomycorrhizal fungal community assembly on regenerating Douglas-fir after wildfire and clearcut harvesting. Oecologia 172(4):1179–1189

    Article  PubMed  Google Scholar 

  • Bonito G, Smith ME, Brenneman T, Vilgalys R (2012) Assessing ectomycorrhizal fungal spore banks of truffle producing soils with pecan seedling trap–plants. Plant Soil 356(1):357–366

    Article  CAS  Google Scholar 

  • Bruns TD, Peay KG, Boynton PJ, Grubisha LC, Hynson NA, Nguyen NH, Rosenstock NP (2009) Inoculum potential of Rhizopogon spores increases with time over the first 4 years of a 99-years spore burial experiment. New Phytol 181(2):463–470

    Article  PubMed  Google Scholar 

  • Buscardo E, Rodriguez-Echeverria S, Martin MP, Angelis PD, Pereira JS, Pereira JS, Rreitas H (2010) Impact of wildfire return interval on the ectomycorrhizal resistant propagules communities of a Mediterranean open forest. Fungal Biol 114(8):628–636

    Article  PubMed  Google Scholar 

  • Cline ET, Ammirati JF, Edmonds RL (2005) Does proximity to mature trees influence ectomycorrhizal fungus communities of Douglas-fir seedlings? New Phytol 166(3):993–1009

    Article  CAS  PubMed  Google Scholar 

  • Collier FA, Bidartondo MI (2009) Waiting for fungi: the ectomycorrhizal invasion of lowland heathlands. J Ecol 97(5):950–963

    Article  Google Scholar 

  • Dickie IA, Richardson SJ, Wiser SK (2009) Ectomycorrhizal fungal communities and soil chemistry in harvested and unharvested temperate Nothofagus rainforests. Can J For Res 39(6):1069–1079

    Article  CAS  Google Scholar 

  • Farjon A (1990) Pinaceae: drawings and descriptions of the genera Abies, Cedrus, Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga. Koeltz Scientific Books, Königstein

    Google Scholar 

  • Fu LK (1992) China plant red data book: rare and endangered plants: volume 1. Science Press, Beijng

    Google Scholar 

  • Fu LK, Li N, Mill RR (1999) Pseudotsuga. In: Wu ZY, Raven PH (eds) Flora of China, vol 4. Science Press and Missouri Botanical Garden, Beijing, pp 33–37

    Google Scholar 

  • Glassman S, Peay KG, Talbot JM, Smith DP, Chung JA, Taylor JW, Vilgalys R, Bruns TD (2015) A continental view of pine-associated ectomycorrhizal fungal spore banks: a quiescent functional guild with a strong biogeographic pattern. New Phytol 205(4):1619–1631

    Article  CAS  PubMed  Google Scholar 

  • Grubisha LC, Trappe JM, Molina R, Spatafora JW (2002) Biology of the ectomycorrhizal genus Rhizopogon VI. Re-examination of infrageneric relationships inferred from phylogenetic analyses of ITS sequence. Mycologia 94(4):607–619

    Article  PubMed  Google Scholar 

  • Guo P, Wang T, Liu Y, Xia Y, Wang G, Shen Z, Chen Y (2014) Phytostabilization potential of evening primrose (Oenothera glazioviana) for copper-contaminated sites. Environ Sci Pollut Res 21(1):631–640

    Article  CAS  Google Scholar 

  • Hagerman SM, Durall DM (2004) Ectomycorrhizal colonization of greenhouse-grown Douglas-fir (Pseudotsuga menziesii) seedlings by inoculum associated with the roots of refuge plants sampled from a Douglas-fir forest in the southern interior of British Columbia. Can J Bot 82(6):742–751

    Article  Google Scholar 

  • Horton TR, Bruns TD (1998) Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas-fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytol 139(2):331–339

    Article  Google Scholar 

  • Horton TR, Bruns TD, Parker VT (1999) Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can J Bot 77(1):93–102

    Google Scholar 

  • Horton TR, Cázares E, Bruns TD (1998) Ectomycorrhizal, vesicular-arbuscular and dark septate fungal colonization of bishop pine (Pinus muricata) seedlings in the first 5 months of growth after wildfire. Mycorrhiza 8(1):11–18

    Article  Google Scholar 

  • Horton TR, Molina R, Hood K (2005) Douglas-fir ectomycorrhizae in 40- and 400-year-old stands: mycobiont availability to late successional western hemlock. Mycorrhiza 15(6):393–403

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Nara K, Zong K, Lian C (2015) Soil propagule banks of ectomycorrhizal fungi along forest development stages after mining. Microb Ecol 69(4):768–777

    Article  CAS  PubMed  Google Scholar 

  • Izzo A, Canright M, Bruns TD (2006a) The effects of heat treatments on ectomycorrhizal resistant propagules and their ability to colonize bioassay seedlings. Mycol Res 110(2):196–202

    Article  PubMed  Google Scholar 

  • Izzo A, Nguyen DT, Bruns TD (2006b) Spatial structure and richness of ectomycorrhizal fungi colonizing bioassay seedlings from resistant propagules in Sierra Nevada forest: comparisons using two hosts that exhibit different seedling establishment patterns. Mycologia 98(3):374–383

    Article  PubMed  Google Scholar 

  • Izzo AD, Meyer M, Trappe JM, North M, Bruns TD (2005) Hypogeous ectomycorrhizal fungal species on roots and in small mammal diet in a mixed-conifer forest. For Sci 51(3):243–254

    Google Scholar 

  • Ishida T, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer–broadleaf forests. New Phytol 174(2):430–440

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Nara K, Tanaka M, Kinoshita A, Hogetsu T (2008) Germination and infectivity of ectomycorrhizal fungal spores in relation to their ecological traits during primary succession. New Phytol 180(2):491–500

    Article  PubMed  Google Scholar 

  • IUCN (2016) IUCN Red List of Threatened Species www.iucnredlist.org. Accessed July 2016

  • Jones MD, Tweig BD, Ward V, Barker J, Durall DM, Simard SW (2010) Functional complementarity of Douglas-fir ectomycorrhizas for extracellular enzyme activity after wildfire or clearcut logging. Funct Ecol 24(5):1139–1151

    Article  Google Scholar 

  • Kipfer T, Moser B, Egli S, Wohlgemuth T, Ghazoul J (2011) Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia 167:219–228

    Article  PubMed  Google Scholar 

  • Kjoller R, Bruns TD (2003) Rhizopogon spore bank communities within and among California pine forests. Mycologia 95(4):603–613

    Article  PubMed  Google Scholar 

  • Luoma DL, Stockdale CA, Molina R, Eberhart JL (2006) The spatial influence of Pseudotsuga menziesii retention trees on ectomycorrhiza diversity. Can J For Res 36(10):2561–2573

    Article  Google Scholar 

  • McCune B, Mefford MJ (2011) PC-ORD. Multivariate analysis of ecological data. Version 6. MjM software, Gleneden Beach, Oregon

  • Miyamoto Y, Nara K (2016) Soil propagule banks of ectomycorrhizal fungi share many common species along an elevation gradient. Mycorrhiza 26(3):189–197

    Article  PubMed  Google Scholar 

  • Molina R, Trappe JM (1994) Biology of the ectomycorrhial genus Rhizopogon. I. Host associations, host-specificity and pure culture syntheses. New Phytol 126(4):653–675

    Article  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 357–423

    Google Scholar 

  • Mujic AB, Hosaka K, Spatafora JW (2014) Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga. Mycologia 106(1):105–112

    Article  PubMed  Google Scholar 

  • Murata M, Kinoshita A, Nara K (2013) Revisiting the host effect on ectomycorrhizal fungal communities: implications from host–fungal associations in relict Pseudotsuga japonica forests. Mycorrhiza 23(8):641–653

    Article  PubMed  Google Scholar 

  • Murata M, Nagata Y, Nara K (2017) Soil spore banks of ectomycorrhizal fungi in endangered Japanese Douglas-fir forests. Ecol Res. https://doi.org/10.1007/s11284-017-1456-1

  • Na Bhadalung N, Suwanarit A, Dell B, Nopamornbodi O, Thamchaipenet A, Rungchuang J (2005) Effects of long-term NP-fertilization on abundance and diversity of arbuscular mycorrhizal fungi under maize cropping system. Plant Soil 270(1):371–382

    Article  Google Scholar 

  • Nara K (2006) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169(1):169–178

    Article  CAS  PubMed  Google Scholar 

  • Nara K (2009) Spores of ectomycorrhizal fungi: ecological strategies for germination and dormancy. New Phytol 181(2):245–248

    Article  PubMed  Google Scholar 

  • Näsholm T, Högberg P, Franklin O, Metcalfe D, Keel SG, Campbell C, Hurry V, Linder S, Högberg MN (2013) Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol 198(1):214–221

    Article  PubMed  Google Scholar 

  • Niemi K, Julkunen-Tiitto R, Häggman H, Sarjala T (2007) Suillus variegatus causes significant changes in the content of individual polyamines and avonoids in scots pine seedlings during mycorrhiza formation in vitro. J Exp Bot 58(3):391–401

    Article  CAS  PubMed  Google Scholar 

  • Onwuchekwa NE, Zwiazek JJ, Quoreshi A, Khasa DP (2014) Growth of mycorrhizal jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings planted in oil sands reclaimed areas. Mycorrhiza 24(6):431–441

    Article  CAS  PubMed  Google Scholar 

  • Peay KG, Bruns TD (2014) Spore dispersal of basidiomycete fungi at the landscape scale is driven by stochastic and deterministic processes and generates variability in plant–fungal interactions. New Phytol 204(1):180–191

    Article  PubMed  Google Scholar 

  • Pickles BJ, Gorzelak MA, Green DS, Egger KN, Massicotte HB (2015) Host and habitat filtering in seedling root-associated fungal communities: taxonomic and functional diversity are altered in 'novel' soils. Mycorrhiza 25(7):517–531

    Article  PubMed  Google Scholar 

  • Põlme S, Bahram M, Yamanaka T, Nara K, Dai YC, Grebenc T, Kraigher H, Toivonen M, Wang P, Matsuda Y, Naadel T, Kennedy PG, Kõljalg U, Tedersoo L (2013) Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol 198(4):1239–1249

    Article  PubMed  Google Scholar 

  • Qu L, Quoreshi AM, Iwase K, Tamai Y, Funada R, Koike T (2003) In vitro ectomycorrhiza formation on two larch species of seedlings with six different fungal species. Eur J Forest Res 6(1):65–73

    Google Scholar 

  • Rui SO, Rranco AR, Castro PML (2012) Combined use of Pinus pinaster plus and inoculation with selected ectomycorrhizal fungi as an ecotechnology to improve plant performance. Ecol Eng 43:95–103

    Article  Google Scholar 

  • Scattolin L, Bolzon P, Montecchio L (2008a) Ageostatistical model to describe root vitality and ectomycorrhization in Norway spruce. Plant Biosyst 142:391–400

    Article  Google Scholar 

  • Scattolin L, Montecchio L, Agerer R (2008b) The ectomycorrhizal community structure in high mountain Norway spruce stands. Trees 22(1):13–22

    Article  Google Scholar 

  • Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modeling. Fungal Biol Rev 26(1):39–60

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Cambridge

    Google Scholar 

  • Sousa NR, Franco AR, Ramos MA, Oliveira RS, Castro PML (2011) Reforestation of burned stands: the effect of ectomycorrhizal fungi on Pinus pinaster establishment. Soil Bio Biochem 43(10):2115–2120

    Article  CAS  Google Scholar 

  • Strauss SH, Doerksen AH, Byrne JR (1990) Evolutionary relationships of Doughlas-fir and its relatives (genus Pseudotsuga) from DNA restriction fragment analysis. Can J Bot 68(7):1502–1510

    Article  CAS  Google Scholar 

  • Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8(11):1837–1850

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal life-style in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20(4):217–263

    Article  PubMed  Google Scholar 

  • Teste FP, Simard SW (2008) Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests. Oecologia 158(2):193–203

    Article  PubMed  Google Scholar 

  • Toljander JF, Eberhardt U, Toljander YK, Leslie RP, Taylor AFS (2006) Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in boreal forest. New Phytol 170(4):873–884

    Article  CAS  PubMed  Google Scholar 

  • Turjaman M, Tamai Y, Segah H, Limin SH, Cha JY, Osaki M, Tawaraya K (2005) Inoculation with the ectomycorrhizal fungi Pisolithus arhizus and Scleroderma sp. improves early growth of Shorea pinanga nursery seedlings. New Forest 30(1):67–73

    Article  Google Scholar 

  • Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176(2):437–447

    Article  PubMed  Google Scholar 

  • Wei X, Yang Z, Li Y, Wang X (2010) Molecular phylogeny and biogeography of Pseudotsuga (Pinaceae): insights into the floristic relationship between Taiwan and its adjacent areas. Mol Phylogenet Evol 55(3):776–785

    Article  CAS  PubMed  Google Scholar 

  • Wen Z, Murata M, Xu Z, Chen Y, Nara K (2015) Ectomycorrhizal fungal communities on the endangered Chinese Douglas-fir (Pseudotsuga sinensis) indicating regional fungal sharing overrides host conservatism across geographical regions. Plant Soil 387(1):189–199

    Article  CAS  Google Scholar 

  • Yamanaka T (1975) Ecology of Pseudotsuga japonica and other coniferous forests in eastern shikoku (in Japanese with English summary). Mem Natl Sci Mus 8:119–136

    Google Scholar 

Download references

Acknowledgments

This study was supported in part by JSPS KAKENHI Grants (21658054.25660115.15H02449.16H02759) to KN, by the National Natural Science Foundation of China (41571307), the National Key Research and Development Plan (2016YFD0800700), the Science Foundation of Jiangsu Province, China (BE2016812) to YC, by Jiangsu Agriculture Science and Technology Innovation Fund (cx(15)1005) to LH, and by the Science Foundation of Jiangsu Province, China (BK20151301) to JX and (BK20170469) to ZW.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yahua Chen or Kazuhide Nara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 18.7 kb)

ESM 2

(DOCX 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Z., Shi, L., Tang, Y. et al. Soil spore bank communities of ectomycorrhizal fungi in endangered Chinese Douglas-fir forests. Mycorrhiza 28, 49–58 (2018). https://doi.org/10.1007/s00572-017-0800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-017-0800-1

Keywords

Navigation