Skip to main content
Log in

pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi play an important role in phosphate supply to the host plants. The fungal hyphae contain tubular vacuoles where phosphate compounds such as polyphosphate are accumulated. Despite their importance for the phosphate storage, little is known about the physiological properties of the tubular vacuoles in arbuscular mycorrhizal fungi. As an indicator of the physiological state in vacuoles, we measured pH of tubular vacuoles in living hyphae of arbuscular mycorrhizal fungus Gigaspora margarita using ratio image analysis with pH-dependent fluorescent probe, 6-carboxyfluorescein. Fluorescent images of the fine tubular vacuoles were obtained using a laser scanning confocal microscope, which enabled calculation of vacuolar pH with high spatial resolution. The tubular vacuoles showed mean pH of 5.6 and a pH range of 5.1–6.3. These results suggest that the tubular vacuoles of arbuscular mycorrhizal fungi have a mildly acidic pH just like vacuoles of other fungal species including yeast and ectomycorrhizal fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashford AE (1998) Dynamic pleiomorphic vacuole systems: are they endosomes and transport compartments in fungal hyphae? Adv Bot Res 28:119–159

    Article  Google Scholar 

  • Ashford AE, Allaway WG (2007) Motile tubular vacuole systems. In: Howard RJ, Gow NAR (eds) The Mycota VIII: Biology of the Fungal Cell, 2nd edn. Springer-Verlag, Berlin, pp 49–86

    Chapter  Google Scholar 

  • Ashford AE, Ryde S, Barrow KD (1994) Demonstration of a short chain polyphosphate in Pisolithus tinctorius and the implications for phosphorus transport. New Phytol 126:239–247

    Article  CAS  Google Scholar 

  • Beyenbach KW, Wieczorek H (2006) The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209:577–589

    Article  CAS  PubMed  Google Scholar 

  • Brett CL, Kallay L, Hua Z, Green R, Chyou A, Zhang Y, Graham TR, Donowitz M, Rao R (2011) Genome-wide analysis reveals the vacuolar pH-stat of Saccharomyces cerevisiae. PLoS ONE 6:e17619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cole L, Orlovich DA, Ashford AE (1998) Structure, function, and motility of vacuoles in filamentous fungi. Fungal Genet Biol 24:86–100

    Article  PubMed  Google Scholar 

  • Cox G, Moran KJ, Sanders F, Nockolds C, Tinker PB (1980) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. III. polyphosphate granules and phosphorus translocation. New Phytol 84:649–659

    Article  CAS  Google Scholar 

  • Darrah PR, Tlalka M, Ashford A, Watkinson SC, Fricker MD (2006) The vacuole system is a significant intracellular pathway for longitudinal solute transport in Basidiomycete fungi. Eukaryot Cell 5:1111–1125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 50:361–389

    Article  CAS  PubMed  Google Scholar 

  • Harrison TS, Chen J, Simons E, Levitz SM (2002) Determination of the pH of the Cryptococcus neoformans vacuole. Med Mycol 40:329–332

    Article  CAS  PubMed  Google Scholar 

  • Haugland RP (1996) Handbook of fluorescent probes and research chemicals, 6th edn. Molecular Probes, Oregon

    Google Scholar 

  • Hesse SJA, Ruijter GJG, Dijkema C, Visser J (2002) Intracellular pH homeostasis in the filamentous fungus Aspergillus niger. Eur J Biochem 269:3485–3494

    Article  CAS  PubMed  Google Scholar 

  • Hothorn M, Neumann H, Lenherr ED, Wehner M, Rybin V, Hassa PO, Uttenweiler A, Reinhardt M, Schmidt A, Seiler J, Ladurner AG, Herrmann C, Scheffzek K, Mayer A (2009) Catalytic core of a membrane-associated eukaryotic polyphosphate polymerase. Science 324:513–516

    Article  CAS  PubMed  Google Scholar 

  • Jolicoeur M, Germette S, Gaudette M, Perrier M, Bécard G (1998) Intracellular pH in arbuscular mycorrhizal fungi. a symbiotic physiological marker. Plant Physiol 116:1279–1288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuga Y, Saito K, Nayuki K, Peterson RL, Saito M (2008) Ultrastructure of rapidly frozen and freeze-substituted germ tubes of an arbuscular mycorrhizal fungus and localization of polyphosphate. New Phytol 178:189–200

    Article  CAS  PubMed  Google Scholar 

  • MacDonald JC, Mazurek M (1987) Phosphorus magnetic resonance spectra of open-chain linear polyphosphates. J Magn Reson 72:48–60

    CAS  Google Scholar 

  • Makarow M, Nevalainen LT (1987) Transport of a fluorescent macromolecule via endosomes to the vacuole in Saccharomyces cerevisiae. J Cell Biol 104:67–75

    Article  CAS  PubMed  Google Scholar 

  • Ogawa N, DeRisi J, Brown PO (2000) New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol Biol Cell 11:4309–4321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Preston RA, Murphy RF, Jones EW (1989) Assay of vacuolar pH in yeast and identification of acidification-defective mutants. Proc Natl Acad Sci U S A 86:7027–7031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rasmussen N, Lloyd DC, Ratcliffe RG, Hansen PE, Jakobsen I (2000) 31P NMR for the study of P metabolism and translocation in arbuscular mycorrhizal fungi. Plant Soil 226:245–253

    Article  CAS  Google Scholar 

  • Rees B, Shepherd VA, Ashford AE (1994) Presence of a motile tubular vacuole system in different phyla of fungi. Mycol Res 98:985–992

    Article  Google Scholar 

  • Rost FWD, Shepherd VA, Ashford AE (1995) Estimation of vacuolar pH in actively growing hyphae of the fungus Pisolithus tinctorius. Mycol Res 99:549–553

    Article  Google Scholar 

  • Saito K, Kuga-Uetake Y, Saito M (2004) Acidic vesicles in living hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita. Plant Soil 261:231–237

    Article  CAS  Google Scholar 

  • Shepherd VA, Orlovich DA, Ashford AE (1993) A dynamic continuum of pleiomorphic tubules and vacuoles in growing hyphae of a fungus. J Cell Sci 104:495–507

    Google Scholar 

  • Shoji J, Arioka M, Kitamoto K (2006) Vacuolar membrane dynamics in the filamentous fungus Aspergillus oryzae. Eukaryot Cell 5:411–421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39:221–244

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Stevens TH, Forgac M (1997) Structure, function and regulation of the vacuolar (H+)-ATPase. Annu Rev Cell Dev Biol 13:779–808

    Article  CAS  PubMed  Google Scholar 

  • Tani C, Ohtomo R, Osaki M, Kuga Y, Ezawa T (2009) ATP-dependent but proton gradient-independent polyphosphate-synthesizing activity in extraradical hyphae of an arbuscular mycorrhizal fungus. Appl Environ Microbiol 75:7044–7050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uetake Y, Kojima T, Ezawa T, Saito M (2002) Extensive tubular vacuole system in an arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 154:761–768

    Article  Google Scholar 

  • Viereck N, Hansen PE, Jakobsen I (2004) Phosphate pool dynamics in the arbuscular mycorrhizal fungus Glomus intraradices studied by in vivo 31P NMR spectroscopy. New Phytol 162:783–794

    Article  CAS  Google Scholar 

  • Yao Q, Ohtomo R, Saito M (2010) Influence of nitrogen and phosphorus on polyphosphate accumulation in Gigaspora margarita during spore germination. Plant Soil 330:303–3011

    Article  CAS  Google Scholar 

  • Zhang JW, Parra KJ, Liu J, Kane PM (1998) Characterization of a temperature-sensitive yeast vacuolar ATPase mutant with defects in actin distribution and bud morphology. J Biol Chem 273:18470–18480

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ryo Ohtomo, Tomoko Kojima, and Shotaro Ando (National Agriculture and Food Research Organization) for experimental support. We also thank Yukari Kuga (Hiroshima University) for critical reading of the manuscript. This work was supported in part by the Programme for Promotion of Basic and Applied Research for Innovations in Bio-oriented Industry to KS. This work was also supported in part by the Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN) of the Bio-oriented Technology Research Advancement Institution of Japan, and for Ministry of Education, Culture, Sports, Science and Technology Grant-in-Aid for Scientific Research (B) to MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Saito.

Additional information

Authors Rintaro Funamoto and Katsuharu Saito contributed equally to this research and share first coauthorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Funamoto, R., Saito, K., Oyaizu, H. et al. pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita . Mycorrhiza 25, 55–60 (2015). https://doi.org/10.1007/s00572-014-0588-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-014-0588-1

Keywords

Navigation