Skip to main content
Log in

Influence of nitrogen and phosphorus on polyphosphate accumulation in Gigaspora margarita during spore germination

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Polyphosphate (polyP) is the form in which phosphorus (P) is transferred from extraradical hyphae into arbuscles in the symbiotic stage of arbuscular mycorrhizal fungi. However, polyP dynamics in the presymbiotic stage are less understood. In this study, we aimed to investigate polyP accumulation in Gigaspora margarita as influenced by nitrogen (N) and/or P supply during germination. Spores of G. margarita were incubated on medium with or without P or N addition. PolyP content in the fungal tissue was monitored using a polyP kinase/luciferase system, and polyP synthetic activity was determined with 32P labeling. The results showed that both N and P were necessary for polyP accumulation in germ tubes. Nitrate increased the polyP content in germ tubes, but ammonium did not. Along with germination, polyP content decreased in spores, but increased in germ tubes. 32P labeling indicated that polyP synthetic activity increased in germ tubes along with germination, but was negligible in spores. Our results suggest that, in the presymbiotic stage of G. margarita, uptake of environmental N and P increases polyP content in germ tubes, and that polyP synthesis occurs mainly therein, leading to polyP accumulation. The possible mechanism of transfer of polyP from spores to hyphae remains to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AMF:

Arbuscular mycorrhizal fungi

DAI:

Days after starting incubation

N:

Nitrogen

P:

Phosphorus

Pi:

Inorganic phosphate

polyP:

Polyphosphate

PPK:

Polyphosphate kinase

TBO:

Toluidine Blue O

References

  • Ahn K, Kornberg A (1990) Polyphosphate kinase from Escherichia coli. Purification and demonstration of a phosphoenzyme intermediate. J Biol Chem 265:11734–11739

    CAS  PubMed  Google Scholar 

  • Ault-Riché D, Fraley C, Tzeng C, Kornberg A (1998) Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli. J Bacteriol 180:1841–1847

    PubMed  Google Scholar 

  • Callow JA, Capaccio LCM, Parish G, Tinker PB (1978) Detection and estimation of polyphosphate in vesicular-arbuscular mycorrhizas. New Phytol 80:125–134

    Article  CAS  Google Scholar 

  • Capaccio LCM, Callow JA (1982) The enzymes of polyphosphate metabolism in vesicular-arbuscular mycorrhizas. New Phytol 91:81–91

    Article  CAS  Google Scholar 

  • Cox G, Moran KJ, Sanders F, Nockolds C, Tinker PB (1980) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. III. Polyphosphate granules and phosphorus translocation. New Phytol 84:649–659

    Article  CAS  Google Scholar 

  • Ezawa T, Cavagnaro TR, Smith SE, Smith FA, Ohtomo R (2004) Rapid accumulation of polyphosphate in extraradical hyphae of an arbuscular mycorrhizal fungus as revealed by histochemistry and a polyphosphate kinase/luciferase system. New Phytol 161:387–392

    Article  CAS  Google Scholar 

  • Greenfield NJ, Hussain M, Lenard J (1987) Effects of growth state and amines on cytoplasmic and vacuolar pH, phosphate and polyphosphate levels in Saccharomyces cerevisiae: a 31P-nuclear magnetic resonance study. Biochim Biophys Acta 926:205–214

    CAS  PubMed  Google Scholar 

  • Harrison MJ, Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629

    Article  CAS  PubMed  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition, 2nd revised edn. Technical communication no. 22. Commonwealth Agricultural Bureau, Farmham Royal, UK, pp 431–432

    Google Scholar 

  • Kong Y, Nielsen JL, Nielsen PH (2004) Microautoradiographic study of Rhodocyclus-related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants. Appl Environ Microbiol 70:5383–5390

    Article  CAS  PubMed  Google Scholar 

  • Kornberg A (1995) Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J Bacteriol 177:491–496

    CAS  PubMed  Google Scholar 

  • Kuroda K, Tanaka S, Ikeda T, Kato J, Takiguchi N, Ohtake H (1999) Inorganic polyphosphate kinase is required to stimulate protein degradation and for adaptation to amino acid starvation in Escherichia coli. Proc Natl Acad Sci USA 96:14264–14269

    Article  CAS  PubMed  Google Scholar 

  • Kuroda A, Nomura K, Ohtomo R, Kato J, Ikeda T, Takiguchi N, Ohtake H, Kornberg A (2001) Role of inorganic polyphosphate in promoting ribosomal protein degradation by the ion protease in E. coli. Science 293:705–708

    Article  CAS  PubMed  Google Scholar 

  • Lei J, Becard G, Catford JG, Piché Y (1991) Root factors stimulate 32P uptake and plasmalemma ATPase activity in vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 118:289–294

    Article  CAS  Google Scholar 

  • Lorenz B, Munkner J, Oliveira MP, Leitao JM, Muller WEG, Schroder HC (1997) A novel method for determination of inorganic polyphosphates using the fluorescent dye Fura-2. Anal Biochem 246:176–184

    Article  CAS  PubMed  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus. Mol Plant Microbe In 14:1140–1148

    Article  CAS  Google Scholar 

  • McGrath JW, Quinn JP (2000) Intracellular accumulation of polyphosphate by the yeast Candida humicola G-1 in response to acid pH. Appl Environ Microbiol 66:4068–4073

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa K, Machida H, Yamakoshi Y, Ohtomo R, Saito K, Saito M, Tominaga N (2006) Polyphosphate metabolism in an acidophilic alga Chlamydomonas acidophila KT-1 (Chlorophyta) under phosphate stress. Plant Sci 170:307–313

    Article  CAS  Google Scholar 

  • Ohtomo R, Saito M (2005) Polyphosphate dynamics in mycorrhizal roots during colonization of an arbuscular mycorrhizal fungus. New Phytol 167:571–578

    Article  CAS  PubMed  Google Scholar 

  • Pestov NA, Kulakovskaya TV, Kulaev IS (2004) Inorganic polyphosphate in mitochondria of Saccharomyces cerevisiae at phosphate limitation and phosphate excess. FEMS Yeast Res 4:643–648

    Article  CAS  PubMed  Google Scholar 

  • Rao NN, Liu S, Kornberg A (1996) Inorganic polyphosphate in Escherichia coli: the phosphate regulon and the stringent response. J Bacteriol 180:2186–2193

    Google Scholar 

  • Rasmussen N, Lloyd DC, Ratcliffe RG, Hansen PE, Jakobsen I (2000) 31P NMR for the study of P metabolism and translocation in arbuscular mycorrhizal fungi. Plant Soil 226:245–253

    Article  CAS  Google Scholar 

  • Saito K, Kuga-Uetake Y, Saito M (2004) Acidic vesicles in living hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita. Plant Soil 261:231–237

    Article  CAS  Google Scholar 

  • Schwarzott D, Walker C, Schüβler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Mol Phylogenet Evol 21:190–197

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Solaiman M, Ezawa T, Kojima T, Saito M (1999) Polyphosphates in intraradical and extraradical hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita. Appl Environ Microbiol 65:5604–5606

    CAS  PubMed  Google Scholar 

  • Thomson BD, Clarkson DT, Brain P (1990) Kinetics of phosphorus uptake by the germ-tubes of the vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 116:647–653

    Article  CAS  Google Scholar 

  • Uetake Y, Kojima T, Ezawa T, Saito M (2002) Extensive tubular vacuole system in an arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 154:761–768

    Article  Google Scholar 

  • Viereck N, Hansen PE, Jakobsen I (2004) Phosphate pool dynamics in the arbuscular mycorrhizal fungus Glomus intraradices studied by in vivo 31P NMR spectroscopy. New Phytol 162:783–794

    Article  CAS  Google Scholar 

  • Zhu HH, Yao Q (2006) Influence of pH value on the spore germination, hyphal growth and polyphosphate content of Gigaspora margarita. Mycosystem 25:120–124

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Katsuharu Saito and Tomoko Kojima for their helpful suggestions during the experiments. This work was supported by the Japan Society for the Promotion of Science (JSPS, P03518) and the Natural Science Fund of China (NSFC, 30570060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Ohtomo.

Additional information

Responsible Editor: Angela Hodge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Q., Ohtomo, R. & Saito, M. Influence of nitrogen and phosphorus on polyphosphate accumulation in Gigaspora margarita during spore germination. Plant Soil 330, 303–311 (2010). https://doi.org/10.1007/s11104-009-0201-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0201-0

Keywords

Navigation