Skip to main content
Log in

Free vibration analysis of double-viscoelastic nano-composite micro-plates reinforced by FG-SWCNTs based on the third-order shear deformation theory

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, free vibration analysis of a double viscoelastic nano-composite plate system reinforced by functionally graded single-walled carbon nanotubes (FG-SWCNT) embedded in a visco-Pasternak medium based on modified strain gradient theory (MSGT) and third-order shear deformation theory (TSDT) is presented. The material properties of the simply-supported nano-composite plates are approximated by the extended rule of mixture. The nonlocal governing equations of motion are obtained using Hamilton’s principle and solved by the Navier and trigonometric methods to obtain natural frequencies for three cases of vibration (out-of-phase vibration, in-phase vibration, and one plate fixed). A parametric study is performed to investigate the effects of material length scale parameter, aspect ratio, stiffness and damping coefficients of visco-Pasternak foundation, and structural damping coefficient on the natural frequency of double viscoelastic nano-composite plate. Also, the influence of volume fraction and different distributions of CNTs on every aspect of the natural frequency of the system is examined. The results show that the values of the natural frequency given by MSGT are higher than those obtained by modified couple stress theory (MCST) and classical theory (CT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akgöz B, Civalek Ö (2015) A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech 226:2277–2294

    MATH  Google Scholar 

  • Al-Furjan M, Farrokhian A, Keshtegar B, Kolahchi R, Trung N-T (2020) Higher order nonlocal viscoelastic strain gradient theory for dynamic buckling analysis of carbon nanocones. Aerosp Sci Technol 107:106259

  • Al-Furjan M, Farrokhian A, Keshtegar B, Kolahchi R, Trung N-T (2021a) Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory. Eur J Mech-A/Solids 86:104169

  • Al-Furjan M, Farrokhian A, Mahmoud S, Kolahchi R (2021b) Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact. Thin-Walled Struct 163:107706

  • Al-Furjan M, Hajmohammad MH, Shen X, Rajak DK, Kolahchi R (2021c) Evaluation of tensile strength and elastic modulus of 7075–T6 aluminum alloy by adding SiC reinforcing particles using vortex casting method. J Alloys Compounds 886:161261

    Google Scholar 

  • Al-Furjan MSH, Dehini R, Paknahad M, Habibi M, Safarpour H (2021d) On the nonlinear dynamics of the multi-scale hybrid nanocomposite-reinforced annular plate under hygro-thermal environment. Arch Civil Mech Eng 21:4. https://doi.org/10.1007/s43452-020-00151-w

    Article  Google Scholar 

  • Alipour MM, Shariyat M (2019) Nonlocal zigzag analytical solution for laplacian hygrothermal stress analysis of annular sandwich macro/nanoplates with poor adhesions and 2D-FGM porous cores. Arch Civil Mech Eng 19:1211–1234. https://doi.org/10.1016/j.acme.2019.06.008

    Article  Google Scholar 

  • Ansari R, Shahabodini A, Shojaei MF (2016) Vibrational analysis of carbon nanotube-reinforced composite quadrilateral plates subjected to thermal environments using a weak formulation of elasticity. Compos Struct 139:167–187

    Google Scholar 

  • Ansari R, Torabi J, Norouzzadeh A (2018) Bending analysis of embedded nanoplates based on the integral formulation of Eringen’s nonlocal theory using the finite element method. Physica B 534:90–97

    Google Scholar 

  • Arefi M, Civalek O (2020) Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory. Arch Civil Mech Eng 20:22. https://doi.org/10.1007/s43452-020-00032-2

    Article  Google Scholar 

  • Arshid E, Arshid H, Amir S, Mousavi SB (2021) Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory. Arch Civil Mech Engineering 21:6. https://doi.org/10.1007/s43452-020-00150-x

    Article  Google Scholar 

  • Bahaadini R, Hosseini M, Khalili-Parizi Z (2019a) Electromechanical stability analysis of smart double-nanobeam systems. Eur Phys J plus 134:1–15

    Google Scholar 

  • Bahaadini R, Saidi AR, Hosseini M (2019b) Flow-induced vibration and stability analysis of carbon nanotubes based on the nonlocal strain gradient timoshenko beam theory. J Vib Control 25:203–218

    Google Scholar 

  • Bahaadini R, Hosseini M, Amiri M (2021) Dynamic stability of viscoelastic nanotubes conveying pulsating magnetic nanoflow under magnetic field. Eng with Computers 37:2877–2889

    Google Scholar 

  • Daneshmehr A, Rajabpoor A, Hadi A (2015) Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories. Int J Eng Sci 95:23–35. https://doi.org/10.1016/j.ijengsci.2015.05.011

    Article  MATH  Google Scholar 

  • Dini A, Zandi-Baghche-Maryam A, Shariati M (2019) Effects of van der waals forces on hygro-thermal vibration and stability of fluid-conveying curved double-walled carbon nanotubes subjected to external magnetic field. Physica E 106:156–169. https://doi.org/10.1016/j.physe.2018.10.005

    Article  Google Scholar 

  • Dini A, Shariati M, Zarghami F, Nematollahi MA (2020) Size-dependent analysis of a functionally graded piezoelectric micro-cylinder based on the strain gradient theory with the consideration of flexoelectric effect: plane strain problem. J Braz Soc Mech Sci Eng 42:1–22

    Google Scholar 

  • Dini A, Hosseini M, Nematollahi MA (2021) On the size-dependent dynamics of curved single-walled carbon nanotubes conveying fluid based on nonlocal theory. Acta Mech 232:4729–4745

    MATH  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Google Scholar 

  • Fan Y, Wang H (2016) Nonlinear bending and postbuckling analysis of matrix cracked hybrid laminated plates containing carbon nanotube reinforced composite layers in thermal environments. Compos B Eng 86:1–16

    Google Scholar 

  • Faramoushjan SG, Jalalifar H, Kolahchi R (2021) Mathematical modelling and numerical study for buckling study in concrete beams containing carbon nanotubes. Adv Concrete Constr 11:521–529

    Google Scholar 

  • Gensler H, Sheybani R, Li P-Y, Mann RL, Meng E (2012) An implantable MEMS micropump system for drug delivery in small animals. Biomed Microdevice 14:483–496

    Google Scholar 

  • Guo J, Chen J, Pan E (2017) Free vibration of three-dimensional anisotropic layered composite nanoplates based on modified couple-stress theory. Physica E 87:98–106

    Google Scholar 

  • Habibi S, Hosseini M, Izadpanah E, Amini Y (2016) Applicability of continuum based models in designing proper carbon nanotube based nanosensors. Comput Mater Sci 122:322–330

    Google Scholar 

  • Hajmohammad MH, Farrokhian A, Kolahchi R (2021) Dynamic analysis in beam element of wave-piercing catamarans undergoing slamming load based on mathematical modelling. Ocean Eng 234:109269

    Google Scholar 

  • Hassanzadeh-Aghdam M, Ansari R (2019) Thermomechanical investigation of unidirectional carbon fiber-polymer hybrid composites containing CNTs. Int J Mech Mater Design 15:471–488

    Google Scholar 

  • Hosseini M, Jamalpoor A (2015) Analytical solution for thermomechanical vibration of double-viscoelastic nanoplate-systems made of functionally graded materials. J Therm Stresses 38:1428–1456

    Google Scholar 

  • Hosseini M, Bahreman M, Jamalpoor A. (2016a) Thermomechanical vibration analysis of FGM viscoelastic multi-nanoplate system incorporating the surface effects via nonlocal elasticity theory. Microsyst Technologies:1–18

  • Hosseini M, Bahreman M, Jamalpoor A (2016b) Using the modified strain gradient theory to investigate the size-dependent biaxial buckling analysis of an orthotropic multi-microplate system. Acta Mech 227:1621–1643

    MATH  Google Scholar 

  • Hosseini M, Jamalpoor A, Bahreman M (2016c) Small-scale effects on the free vibrational behavior of embedded viscoelastic double-nanoplate-systems under thermal environment. Acta Astronaut 129:400–409

    Google Scholar 

  • Hosseini M, Dini A, Eftekhari M (2017a) Strain gradient effects on the thermoelastic analysis of a functionally graded micro-rotating cylinder using generalized differential quadrature method. Acta Mech 228:1563–1580. https://doi.org/10.1007/s00707-016-1780-5

    Article  MATH  Google Scholar 

  • Hosseini M, Jamalpoor A, Fath A (2017b) Surface effect on the biaxial buckling and free vibration of FGM nanoplate embedded in visco-pasternak standard linear solid-type of foundation. Meccanica 52:1381–1396

    MATH  Google Scholar 

  • Hosseini M, Bahaadini R, Makkiabadi M (2018a) Application of the green function method to flow-thermoelastic forced vibration analysis of viscoelastic carbon nanotubes. Microfluid Nanofluid 22:1–15

    Google Scholar 

  • Hosseini M, Mofidi M, Jamalpoor A, Safi Jahanshahi M (2018b) Nanoscale mass nanosensor based on the vibration analysis of embedded magneto-electro-elastic nanoplate made of FGMs via nonlocal mindlin plate theory. Microsyst Technol 24:2295–2316

    Google Scholar 

  • Hosseini M, Ghorbanpour Arani A, Karamizadeh M, Niknejad S, Hosseinpour A (2022) Static and dynamic stability analysis of thick CNT reinforced beams resting on pasternak foundation under axial and follower forces. J Solid Mech 14:1–16

    Google Scholar 

  • Inaba S, Akaishi K, Mori T, Hane K (1993) Analysis of the resonance characteristics of a cantilever vibrated photothermally in a liquid. J Appl Phys 73:2654–2658

    Google Scholar 

  • Jamalpoor A, Hosseini M (2015) Biaxial buckling analysis of double-orthotropic microplate-systems including in-plane magnetic field based on strain gradient theory. Compos B Eng 75:53–64

    Google Scholar 

  • Jamalpoor A, Ahmadi-Savadkoohi A, Hosseini-Hashemi S (2016) Free vibration and biaxial buckling analysis of magneto-electro-elastic microplate resting on visco-pasternak substrate via modified strain gradient theory. Smart Mater Struct 25:105035

    Google Scholar 

  • Jamalpoor A, Ahmadi-Savadkoohi A, Hosseini M, Hosseini-Hashemi S (2017a) Free vibration and biaxial buckling analysis of double magneto-electro-elastic nanoplate-systems coupled by a visco-pasternak medium via nonlocal elasticity theory. Eur J Mech-A/Solids 63:84–98

    MATH  Google Scholar 

  • Jamalpoor A, Bahreman M, Hosseini M. (2017b) Free transverse vibration analysis of orthotropic multi-viscoelastic microplate system embedded in visco-pasternak medium via modified strain gradient theory. J Sandwich Struct Mater. 1099636216689384

  • Kolahchi R, Kolahdouzan F (2021) A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions. Appl Math Model 91:458–475

  • Kolahchi R, Keshtegar B, Trung N-T (2022) Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions. J Sandwich Struct Mater 24:643–662

  • Kundalwal S, Ray MC (2011) Micromechanical analysis of fuzzy fiber reinforced composites. Int J Mech Mater Design 7:149–166

    Google Scholar 

  • Lam DC, Yang F, Chong A, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    MATH  Google Scholar 

  • Lei Z, Liew K, Yu J (2013) Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method. Compos Struct 98:160–168

    MATH  Google Scholar 

  • Mohammadimehr M, Navi BR, Arani AG (2015) Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method. Composite Struct 131:654–671

    Google Scholar 

  • Mohammadimehr M, Mohandes M, Moradi M (2016a) Size dependent effect on the buckling and vibration analysis of double-bonded nanocomposite piezoelectric plate reinforced by boron nitride nanotube based on modified couple stress theory. J Vibration Control 22:1790–1807

    Google Scholar 

  • Mohammadimehr M, Salemi M, Navi BR (2016b) Bending, buckling, and free vibration analysis of MSGT microcomposite reddy plate reinforced by FG-SWCNTs with temperature-dependent material properties under hydro-thermo-mechanical loadings using DQM. Composite Struct 138:361–380

    Google Scholar 

  • Motezaker M, Kolahchi R, Rajak DK, Mahmoud S (2021) Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load. Polym Compos 42:4073–4081

    Google Scholar 

  • Nematollahi MA, Jamali B, Hosseini M (2020) Fluid velocity and mass ratio identification of piezoelectric nanotube conveying fluid using inverse analysis. Acta Mech 231:683–700

    MATH  Google Scholar 

  • Nguyen N-T, Huang X, Chuan TK (2002) MEMS-micropumps: a review. J Fluids Eng 124:384–392

    Google Scholar 

  • Qu Y, Li P, Zhang G, Jin F, Gao X-L (2020) A microstructure-dependent anisotropic magneto-electro-elastic Mindlin plate model based on an extended modified couple stress theory. Acta Mech 231:4323–4350

    MATH  Google Scholar 

  • Rafiee R, Ghorbanhosseini A (2018) Predicting mechanical properties of fuzzy fiber reinforced composites: radially grown carbon nanotubes on the carbon fiber. Int J Mech Mater Design 14:37–50

    Google Scholar 

  • Sadeghi-Goughari M, Hosseini M (2015) The effects of non-uniform flow velocity on vibrations of single-walled carbon nanotube conveying fluid. J Mech Sci Technol 29:723–732

    Google Scholar 

  • Sahmani S, Ansari R (2013) On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory. Compos Struct 95:430–442

    Google Scholar 

  • Shen H-S, Zhang C-L (2010) Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Mater Des 31:3403–3411

    Google Scholar 

  • Suhr J, Koratkar NA (2008) Energy dissipation in carbon nanotube composites: a review. J Mater Sci 43:4370–4382

    Google Scholar 

  • Thai H-T, Kim S-E (2013) A size-dependent functionally graded Reddy plate model based on a modified couple stress theory. Compos B Eng 45:1636–1645

    Google Scholar 

  • Yang F, Chong A, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    MATH  Google Scholar 

  • Zandi-Baghche-Maryam A, Dini A, Hosseini M (2022) Wave propagation analysis of inhomogeneous Multi–Nanoplate systems subjected to a thermal field considering surface and flexoelectricity effects. Waves in Random and Complex Media 1–28. https://doi.org/10.1080/17455030.2022.2032467

  • Zhu P, Lei Z, Liew KM (2012) Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos Struct 94:1450–1460

    Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hosseini.

Ethics declarations

Conflict of interest

Mohammad Hosseini declares that he has no conflict of interest. Nahid Bemanadi declares that she has no conflict of interest. Mohammadreza Mofidi declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned} \delta U & = \int {\int_{{ - \frac{h}{2}}}^{{\frac{h}{2}}} {M_{{11}}^{0} \delta u_{{,x}} + M_{{11}}^{1} \delta \varphi _{{1,x}} - cM_{{11}}^{3} \delta \varphi _{{1,x}} - cM_{{11}}^{3} \delta w_{{,xx}} + M_{{22}}^{0} \delta v_{{,y}} } } \\ & + M_{{22}}^{1} \delta \varphi _{{2,y}} - cM_{{22}}^{3} \delta \varphi _{{2,y}} - cM_{{11}}^{3} \delta w_{{,yy}} + M_{{12}}^{0} \left( {\delta u_{{,y}} + \delta v_{{,x}} } \right) + M_{{12}}^{1} (\delta \varphi _{{1,y}} \\ & + \delta \varphi _{{2,x}} ) - cM_{{12}}^{3} \left( {\delta \varphi _{{1,y}} + \delta \varphi _{{2,x}} + 2\delta w_{{,xy}} } \right) + M_{{13}}^{0} \delta \varphi _{1} + M_{{13}}^{0} \delta w_{{,x}} \\ &- 3cM_{{13}}^{2} \left( {\delta \varphi _{1} + \delta w_{{,x}} } \right) + M_{{23}}^{0} \delta \varphi _{2} + M_{{23}}^{0} \delta w_{{,y}} - 3cM_{{23}}^{2} \left( {\delta \varphi _{2} + \delta w_{{,y}} } \right) \\ & + P_{1}^{1} \left( {\delta \varphi _{{1,xx}} + \delta \varphi _{{2,xy}} } \right) - cP_{1}^{3} \left( {\delta \varphi _{{1,xx}} + \delta \varphi _{{2,xy}} } \right) + P_{2}^{0} \left( {\delta u_{{,xy}} + \delta v_{{,yy}} } \right) \\ &- cP_{2}^{3} \left( {\delta w_{{,yyy}} + \delta w_{{,xxy}} } \right) + P_{2}^{1} \left( {\delta \varphi _{{1,xy}} + \delta \varphi _{{2,yy}} } \right) - cP_{2}^{3} \left( {\delta \varphi _{{1,xy}} + \delta \varphi _{{2,yy}} } \right) \\ & +P_{1}^{0} \left( {\delta u_{{,xx}} + \delta v_{{,xy}} } \right) - cP_{1}^{3} \left( {\delta w_{{,xxx}} + \delta w_{{,xyy}} } \right)P_{3}^{0} \left( {\delta \varphi _{{1,x}} + \delta \varphi _{{2,y}} } \right) - 3cP_{3}^{2} (\delta \varphi _{{1,x}} \\ & + \delta \varphi _{{2,y}} ) - 3cP_{3}^{2} \left( {\delta w_{{,xx}} + \delta w_{{,yy}} } \right) + \frac{1}{2}(Y_{{11}}^{0} \delta w_{{,xy}} + 3cY_{{11}}^{2} \delta w_{{,xy}} - Y_{{11}}^{0} \delta \varphi _{{2,x}} \\ & +3cY_{{11}}^{2} \delta \varphi _{{2,x}} ) + \frac{1}{2}\left( {Y_{{22}}^{0} \delta w_{{,xy}} - 3cY_{{22}}^{2} \delta w_{{,xy}} + Y_{{22}}^{0} \delta \varphi _{{1,y}} - 3cY_{{22}}^{2} \delta \varphi _{{1,y}} } \right) \\ &+ \frac{1}{2}(Y_{{12}}^{0} \delta w_{{,yy}} - Y_{{12}}^{0} \delta w_{{,xx}} 3cY_{{12}}^{2} \delta w_{{,yy}} - 3cY_{{12}}^{2} \delta w_{{,xx}} + Y_{{12}}^{0} \delta \varphi _{{1,x}} - Y_{{12}}^{0} \delta \varphi _{{2,y}} \\ & - 3cY_{{12}}^{2} \delta \varphi _{{1,x}} + 3cY_{{12}}^{2} \delta \varphi _{{2,y}} ) + \frac{1}{2}(Y_{{13}}^{0} \delta v_{{,xx}} - Y_{{13}}^{0} \delta u_{{,xy}} + Y_{{13}}^{1} \delta \varphi _{{2,xx}} \\ & -Y_{{13}}^{1} \delta \varphi _{{1,xy}} - cY_{{13}}^{3} \delta \varphi _{{2,xx}} + cY_{{13}}^{3} \delta \varphi _{{1,xy}} + 6cY_{{13}}^{1} + \left( {\delta \varphi _{2} + \delta w_{{,y}} } \right)) + \frac{1}{2}(Y_{{23}}^{0} \delta v_{{,xy}} \\ & - Y_{{23}}^{0} \delta u_{{,yy}} + Y_{{23}}^{1} \delta \varphi _{{2,xy}} - Y_{{23}}^{1} \delta \varphi _{{1,yy}} - cY_{{23}}^{3} \delta \varphi _{{2,xy}} + + cY_{{23}}^{3} \delta \varphi _{{1,yy}} \\ &- 6cY_{{23}}^{1} \left( {\delta \varphi _{1} + \delta w_{{,x}} } \right)) + \frac{1}{5}(2T_{{111}}^{0} \delta u_{{,xx}} - T_{{111}}^{0} \delta u_{{,yy}} - 2T_{{111}}^{0} \delta v_{{,xy}} \\ &- 2cT_{{111}}^{3} \delta w_{{,xxx}} + 3cT_{{111}}^{3} \delta w_{{,xyy}} + \left( {T_{{111}}^{1} - cT_{{111}}^{3} } \right)\left( {2\delta \varphi _{{1,xx}} - \delta \varphi _{{1,yy}} - 2\delta \varphi _{{2,xy}} } \right) \\ & + 6cT_{{111}}^{1} \left( {\delta \varphi _{1} + \delta w_{{,x}} } \right)) + \frac{1}{5}(2T_{{222}}^{0} \delta v_{{,yy}} - T_{{222}}^{0} \delta v_{{,xx}} - 2T_{{222}}^{0} \delta u_{{,xy}} \\ & -2cT_{{222}}^{3} \delta w_{{,yyy}} + 3cT_{{222}}^{3} \delta w_{{,xxy}} + \left( {T_{{222}}^{1} - cT_{{222}}^{3} } \right)\left( {2\delta \varphi _{{2,yy}} - \delta \varphi _{{2,xx}} - 2\delta \varphi _{{1,xy}} } \right) \\ & + 6cT_{{222}}^{1} \left( {\delta \varphi _{2} + \delta w_{{,y}} } \right)) + \frac{1}{5}(\left( {6cT_{{333}}^{2} - T_{{333}}^{0} } \right)\left( {\delta w_{{,xx}} + \delta w_{{,yy}} + \delta \varphi _{{1,x}} + \delta \varphi _{{2,y}} } \right) \\ & - T_{{333}}^{0} \delta \varphi _{{1,x}} - T_{{333}}^{0} \delta \varphi _{{2,y}} ) + \frac{1}{5}(T_{{112}}^{0} \left( {\frac{8}{3}\delta u_{{,xy}} - \frac{4}{3}\delta v_{{,xx}} - \delta v_{{,yy}} } \right) + cT_{{112}}^{3} (\delta w_{{,yyy}} \\ & - 4\delta w_{{,xxy}} )) + \left( {\frac{1}{3}T_{{112}}^{1} - \frac{c}{3}T_{{112}}^{3} } \right)\left( {8\delta \varphi _{{1,xy}} - \delta \varphi _{{2,yy}} + 4\delta \varphi _{{2,xx}} } \right) + 2cT_{{112}}^{1} \\ & \left( {\delta \varphi _{2} + \delta w_{{,y}} } \right)) + \frac{1}{5}(T_{{221}}^{0} \left( {\frac{4}{3}\delta u_{{,yy}} - \delta u_{{,xx}} + \frac{8}{3}\delta v_{{,xy}} } \right) + cT_{{221}}^{3} (\delta w_{{,xxx}} \\ -& 4\delta w_{{,xyy}} ) + \left( {\frac{1}{3}T_{{221}}^{1} - \frac{c}{3}T_{{221}}^{3} } \right)\left( {8\delta \varphi _{{2,xy}} - \delta \varphi _{{1,xx}} + 4\delta \varphi _{{1,yy}} } \right) + 2cT_{{221}}^{1} (\delta \varphi _{1} \\ &+ \delta w_{{,x}} )) + \frac{1}{5}(T_{{331}}^{0} \left( { - \frac{1}{3}\delta u_{{,yy}} - \delta u_{{,xx}} - \frac{2}{3}\delta v_{{,xy}} } \right) + cT_{{331}}^{3} \left( {\delta w_{{,xxx}} + \delta w_{{,xyy}} } \right) \\ &+ \left( { - \frac{1}{3}T_{{331}}^{1} + \frac{c}{3}T_{{331}}^{3} } \right)\left( {\delta \varphi _{{1,yy}} + 3\delta \varphi _{{1,xx}} + 2\delta \varphi _{{2,xy}} } \right) - 8cT_{{331}}^{1} \left( {\delta \varphi _{1} + \delta w_{{,x}} } \right)) \\ & +\frac{1}{5}(T_{{332}}^{0} \left( { - \frac{1}{3}\delta v_{{,xx}} - \delta v_{{,yy}} - \frac{2}{3}\delta u_{{,xy}} } \right) + cT_{{332}}^{3} \left( {\delta w_{{,yyy}} + \delta w_{{,xxy}} } \right) + ( - \frac{1}{3}T_{{332}}^{1} \\ &+ \frac{c}{3}T_{{332}}^{3} )\left( {\delta \varphi _{{2,xx}} + 3\delta \varphi _{{2,yy}} + 2\delta \varphi _{{1,xy}} } \right) - 8cT_{{332}}^{1} \left( {\delta \varphi _{2} + \delta w_{{,y}} } \right)) + \frac{1}{5}((2cT_{{113}}^{2} \\ & - \frac{1}{3}T_{{113}}^{0} )\left( {\delta w_{{,yy}} - 4\delta w_{{,xx}} } \right) + \left( {2cT_{{113}}^{2} - \frac{2}{3}T_{{113}}^{0} } \right)\left( {\delta \varphi _{{2,y}} - 4\delta \varphi _{{1,x}} } \right)) \\ & +\frac{1}{5}(\left( {2cT_{{223}}^{2} - \frac{1}{3}T_{{223}}^{0} } \right)\left( {\delta w_{{,xx}} - 4\delta w_{{,yy}} + \left( {2cT_{{223}}^{2} - \frac{2}{3}T_{{223}}^{0} } \right)\left( {\delta \varphi _{{1,x}} - 4\delta \varphi _{{2,y}} } \right)} \right) \\ & + \left( {2T_{{123}}^{0} - 6cT_{{123}}^{2} } \right)\left( {\delta w_{{,xy}} + \delta \varphi _{{1,y}} + \delta \varphi _{{2,x}} } \right) - 6cT_{{123}}^{2} \delta w_{{,xy}} dzdA \\ \end{aligned}$$
(A-1)

Appendix B

$$\delta u=0 or \left({M}_{11}^{0}-{P}_{1,x}^{0}-{P}_{2,y}^{0}+\frac{1}{2}{Y}_{13,y}^{0}-\frac{2}{5}{T}_{111,x}^{0}+\frac{2}{5}{T}_{222,y}^{0}-\frac{8}{15}{T}_{112,y}^{0}+\frac{1}{15}{T}_{221,x}^{0}+\frac{1}{5}{T}_{331,x}^{0}+\frac{2}{15}{T}_{332,y}^{0}\right){n}_{x}+\left({M}_{12}^{0}+-{P}_{2,x}^{0}+\frac{1}{2}{Y}_{13,x}^{0}\frac{1}{2}{Y}_{23,y}^{0}+\frac{2}{5}{T}_{222,x}^{0}-\frac{8}{15}{T}_{112,x}^{0}+\frac{1}{5}{T}_{111,y}^{0}-\frac{4}{5}{T}_{221,y}^{0}+\frac{1}{15}{T}_{331,y}^{0}+\frac{2}{15}{T}_{332,x}^{0}\right){n}_{y}=0$$
(B-1)
$$\delta v=0 or \left({M}_{12}^{0}-{P}_{1,y}^{0}-\frac{1}{2}{Y}_{13,x}^{0}-\frac{1}{2}{Y}_{23,y}^{0}+\frac{2}{5}{T}_{111,y}^{0}-\frac{4}{15}{T}_{112,x}^{0}+\frac{1}{5}{T}_{222,x}^{0}-\frac{8}{15}{T}_{221,y}^{0}+\frac{2}{15}{T}_{331,y}^{0}+\frac{1}{15}{T}_{332,x}^{0}\right){n}_{x}+\left({M}_{22}^{0}-{P}_{1,x}^{0}+{P}_{2,y}^{0}-\frac{1}{2}{Y}_{23,x}^{0}+\frac{2}{5}{T}_{111,x}^{0}-\frac{2}{5}c{T}_{222,y}^{0}+\frac{1}{15}{T}_{112,y}^{0}-\frac{8}{15}{T}_{221,x}^{0}+\frac{2}{15}{T}_{331,x}^{0}+\frac{1}{5}{T}_{332,y}^{0}\right){n}_{y}=0$$
(B-2)
$$\delta w=0\mathrm{ or }\left(c{M}_{11,x}^{3}+2c{M}_{12,y}^{3}+{M}_{13}^{0}-3c{M}_{13}^{2}-c{P}_{1,xx}^{3}-c{P}_{2,xy}^{3}-c{P}_{1,yy}^{3}-3c{P}_{3,x}^{2}-\frac{1}{2}{Y}_{11,y}^{0}-\frac{3}{2}c{Y}_{11,y}^{2}+\frac{1}{2}{Y}_{22,y}^{0}+\frac{3}{2}c{Y}_{22,y}^{2}+\frac{1}{2}{Y}_{12,x}^{0}+\frac{3}{2}c{Y}_{12,x}^{2}-3c{Y}_{23}^{1}-\frac{2}{5}c{T}_{111,xx}^{3}+\frac{3}{5}c{T}_{111,yy}^{3}+\frac{6}{5}c{T}_{111}^{1}+\frac{3}{5}c{T}_{222,xy}^{3}-\frac{6}{5}c{T}_{333,x}^{2}+\frac{1}{5}{T}_{333,x}^{0}-2{T}_{123,y}^{0}+12c{T}_{123,y}^{3}-\frac{4}{5}c{T}_{112,xy}^{3}+\frac{c}{5}{T}_{221,xx}^{3}-\frac{4}{5}c{T}_{221,yy}^{3}+\frac{2}{5}c{T}_{221}^{1}+\frac{c}{5}{T}_{331,xx}^{3}+\frac{c}{5}{T}_{331,yy}^{3}+\frac{8}{5}c{T}_{331}^{1}+\frac{c}{5}{T}_{332,xy}^{3}+\frac{8}{5}c{T}_{113,x}^{2}-\frac{4}{15}{T}_{113,x}^{0}-\frac{2}{5}c{T}_{223,x}^{2}+\frac{1}{15}{T}_{223,x}^{0}+{k}_{g}({w}_{,x})\right){n}_{x}+\left(c{M}_{22,y}^{3}+2c{M}_{12,x}^{3}+{M}_{23}^{0}-3c{M}_{23}^{0}-c{P}_{2,yy}^{3}+3c{P}_{3,y}^{2}-c{P}_{1,xy}^{3}-c{P}_{2,xx}^{3}-\frac{1}{2}{Y}_{11,x}^{0}-\frac{3}{2}c{Y}_{11,x}^{2}+\frac{1}{2}{Y}_{22,x}^{0}+\frac{3}{2}c{Y}_{22,x}^{2}-\frac{1}{2}{Y}_{12,y}^{0}-\frac{3}{2}c{Y}_{12,y}^{2}+3c{Y}_{13}^{1}\frac{3}{5}c{T}_{111,xy}^{3}+\frac{3}{5}c{T}_{222,xx}^{3}-\frac{2}{5}c{T}_{222,yy}^{3}+\frac{6}{5}c{T}_{222}^{1}-\frac{6}{5}c{T}_{333,y}^{2}+\frac{1}{5}{T}_{333,y}^{0}-\frac{4}{5}c{T}_{221,xy}^{3}-\frac{4}{5}c{T}_{112,xx}^{3}+\frac{c}{5}{T}_{112,yy}^{3}+\frac{2}{5}c{T}_{112}^{1}+\frac{c}{5}{T}_{331,xy}^{3}+\frac{c}{5}{T}_{332,xx}^{3}+\frac{c}{5}{T}_{332,yy}^{3}+\frac{8}{5}c{T}_{332}^{1}+\frac{2}{5}c{T}_{113}^{2}+\frac{1}{15}{T}_{113}^{0}+\frac{8}{5}c{T}_{223,y}^{2}-\frac{4}{15}{T}_{223,y}^{0}-2{T}_{123,x}^{0}+12c{T}_{123,x}^{3}+{k}_{g}({w}_{,y})\right){n}_{y}=0$$
(B-3)
$$\delta {\varphi }_{1}=0\mathrm{ or }\left({M}_{11}^{1}-c{M}_{11}^{3}-{P}_{1,x}^{1}+c{P}_{1,x}^{3}-{P}_{2,y}^{1}+c{P}_{2,y}^{3}+{P}_{3}^{0}-3c{P}_{3}^{2}+\frac{1}{2}{Y}_{12}^{0}-\frac{3}{2}c{Y}_{12}^{2}+\frac{1}{2}{Y}_{13,y}^{1}-\frac{c}{2}{Y}_{13,y}^{3}-\frac{2}{5}{T}_{111,x}^{1}+\frac{2}{5}c{T}_{111,x}^{3}+\frac{2}{5}{T}_{222,y}^{1}-\frac{2}{5}c{T}_{222,y}^{3}+\frac{6}{5}c{T}_{333}^{2}-\frac{2}{5}{T}_{333}^{0}-\frac{8}{15}{T}_{112,y}^{1}+\frac{8}{15}c{T}_{112,y}^{3}+\frac{1}{15}{T}_{221,x}^{1}-\frac{c}{15}{T}_{221,x}^{3}+\frac{3}{15}{T}_{331}^{1}-\frac{3}{15}c{T}_{331}^{3}+\frac{2}{15}{T}_{322,y}^{1}-\frac{2}{15}c{T}_{332,y}^{3}-\frac{8}{5}c{T}_{113}^{2}+\frac{8}{15}{T}_{113}^{0}+\frac{2}{5}c{T}_{223}^{2}-\frac{2}{15}{T}_{223}^{0}\right){n}_{x}+\left({M}_{12}^{1}-c{M}_{12}^{3}-{P}_{2,x}^{1}+c{P}_{2,x}^{3}+\frac{1}{2}{Y}_{22}^{0}-\frac{3}{2}c{Y}_{22}^{2}+\frac{1}{2}{Y}_{13,x}^{1}-\frac{c}{2}{Y}_{13,x}^{3}+\frac{1}{2}{Y}_{23,y}^{1}-\frac{c}{2}{Y}_{23,y}^{3}+\frac{1}{5}{T}_{111,y}^{1}-\frac{1}{5}c{T}_{111,y}^{3}+\frac{2}{5}{T}_{222,x}^{1}-\frac{2}{5}c{T}_{222,x}^{3}-\frac{8}{15}{T}_{112,x}^{1}+\frac{8}{15}c{T}_{112,x}^{3}-\frac{4}{15}{T}_{221,y}^{1}-\frac{4}{15}c{T}_{221,y}^{3}-\frac{1}{15}{T}_{331}^{1}-\frac{c}{15}{T}_{331}^{3}+\frac{2}{15}{T}_{322,x}^{1}-\frac{2}{15}c{T}_{332,x}^{3}+2{T}_{123}^{0}-6c{T}_{123}^{2}\right){n}_{y}=0$$
(B-4)
$$\delta {\varphi }_{2}=0\mathrm{ or }\left({M}_{12}^{1}-c{M}_{12}^{3}-{P}_{1,y}^{1}+c{P}_{1,y}^{3}-\frac{1}{2}{Y}_{11}^{0}+\frac{3}{2}c{Y}_{11}^{2}-\frac{1}{2}{Y}_{13,x}^{1}+\frac{c}{2}{Y}_{13,x}^{3}-\frac{1}{2}{Y}_{23,y}^{1}+\frac{c}{2}{Y}_{23,y}^{3}+\frac{2}{5}{T}_{111,y}^{1}-\frac{2}{5}c{T}_{111,y}^{3}+\frac{1}{5}{T}_{222,x}^{1}-\frac{1}{5}c{T}_{222,x}^{3}-\frac{4}{15}{T}_{112,x}^{1}+\frac{4}{15}c{T}_{112,x}^{3}-\frac{8}{15}{T}_{221,y}^{1}+\frac{8}{15}c{T}_{221,y}^{3}+\frac{2}{15}{T}_{331,y}^{1}-\frac{2}{15}c{T}_{331,y}^{3}+\frac{1}{15}{T}_{332,x}^{1}-\frac{c}{15}{T}_{332,x}^{3}+2{T}_{123}^{0}-6c{T}_{123}^{2}\right){n}_{x}+\left({M}_{22}^{1}-c{M}_{22}^{3}-{P}_{1,x}^{1}+c{P}_{1,x}^{3}-{P}_{2,y}^{1}+c{P}_{2,y}^{3}+{P}_{3}^{0}-3c{P}_{3}^{2}-\frac{1}{2}{Y}_{12}^{0}+\frac{3}{2}c{Y}_{12}^{2}-\frac{1}{2}{Y}_{23,x}^{1}+\frac{c}{2}{Y}_{23,x}^{3}+\frac{2}{5}{T}_{111,x}^{1}-\frac{2}{5}c{T}_{111,x}^{3}-\frac{2}{5}{T}_{222,y}^{1}+\frac{2}{5}c{T}_{222,y}^{3}+\frac{6}{5}c{T}_{333}^{2}-\frac{2}{5}{T}_{333}^{0}+\frac{1}{15}{T}_{112,y}^{1}-\frac{c}{15}{T}_{112,y}^{3}-\frac{8}{15}{T}_{221,x}^{1}+\frac{8}{15}c{T}_{221,x}^{3}+\frac{2}{15}{T}_{331,x}^{1}-\frac{2}{15}c{T}_{331,x}^{3}+\frac{1}{15}{T}_{332,y}^{1}-\frac{c}{15}{T}_{332,y}^{3}+\frac{2}{5}c{T}_{113}^{2}-\frac{2}{15}{T}_{113}^{0}-\frac{8}{5}c{T}_{223}^{2}+\frac{8}{15}{T}_{223}^{0}\right){n}_{y}=0$$
(B-5)
$$\delta {u}_{,x}=0\mathrm{ or }\left({P}_{1}^{0}+\frac{2}{5}{T}_{111}^{0}-\frac{1}{15}{T}_{221}^{0}-\frac{1}{5}{T}_{331}^{0}\right){n}_{x}+\left({P}_{2}^{0}-\frac{1}{2}{Y}_{13}^{0}-\frac{2}{5}{T}_{222}^{0}+\frac{8}{15}{T}_{112}^{0}-\frac{2}{15}{T}_{332}^{0}\right){n}_{y}=0$$
(B-6)
$$\delta {u}_{,y}=0\mathrm{ or }\left({P}_{2}^{0}-\frac{1}{2}{Y}_{13}^{0}-\frac{2}{5}{T}_{222}^{0}+\frac{8}{15}{T}_{112}^{0}-\frac{2}{15}{T}_{332}^{0}\right){n}_{x}+\left(-\frac{1}{2}{Y}_{23}^{0}-\frac{1}{5}{T}_{111}^{0}+\frac{4}{15}{T}_{221}^{0}-\frac{1}{15}{T}_{331}^{0}\right){n}_{y}=0$$
(B-7)
$$\delta {v}_{,x}=0\mathrm{ or }\left(\frac{1}{2}{Y}_{13}^{0}-\frac{1}{5}{T}_{222}^{0}+\frac{4}{15}{T}_{112}^{0}-\frac{1}{15}{T}_{332}^{0}\right){n}_{x}+\left({P}_{1}^{0}+\frac{1}{2}{Y}_{23}^{0}-\frac{2}{5}{T}_{111}^{0}+\frac{8}{15}{T}_{221}^{0}-\frac{2}{15}{T}_{331}^{0}-\frac{2}{15}{T}_{332}^{0}\right){n}_{y}=0$$
(B-8)
$$\delta {v}_{,y}=0\mathrm{ or }\left({P}_{1}^{0}+\frac{1}{2}{Y}_{23}^{0}-\frac{2}{5}{T}_{111}^{0}+\frac{8}{15}{T}_{221}^{0}-\frac{2}{15}{T}_{331}^{0}\right){n}_{x}+\left(-{P}_{2}^{0}+\frac{2}{5}{T}_{222}^{0}-\frac{1}{15}{T}_{112}^{0}-\frac{1}{5}{T}_{332}^{0}\right){n}_{y}=0$$
(B-9)
$$\delta {w}_{,x}=0\mathrm{ or }\left(-c{M}_{11}^{3}+c{P}_{1,x}^{3}+c{P}_{2,y}^{3}-3c{P}_{3}^{2}-\frac{1}{2}{Y}_{12}^{0}-\frac{3}{2}c{Y}_{12}^{2}+\frac{2}{5}c{T}_{111,x}^{3}-\frac{3}{5}c{T}_{222,y}^{3}+\frac{6}{5}c{T}_{333}^{2}-\frac{1}{5}{T}_{333}^{0}+\frac{4}{5}c{T}_{112,y}^{3}-\frac{c}{5}{T}_{221,x}^{3}-\frac{c}{5}{T}_{331,x}^{3}-\frac{c}{5}{T}_{332,y}^{3}-\frac{8}{5}c{T}_{113}^{2}+\frac{4}{15}{T}_{113}^{0}+\frac{2}{5}c{T}_{223}^{2}-\frac{1}{15}{T}_{223}^{0}\right){n}_{x}+\left(-2c{M}_{12}^{3}+c{P}_{1,y}^{3}+c{P}_{2,x}^{3}+\frac{1}{2}{Y}_{11}^{0}+\frac{3}{2}c{Y}_{11}^{2}-\frac{1}{2}{Y}_{22}^{0}-\frac{3}{2}c{Y}_{22}^{2}-\frac{3}{5}c{T}_{111,y}^{3}-\frac{3}{5}c{T}_{222,x}^{3}+\frac{4}{5}{T}_{221,y}^{3}+\frac{4}{5}c{T}_{112,x}^{3}-\frac{c}{5}{T}_{331,y}^{3}-\frac{c}{5}{T}_{332,x}^{3}+2{T}_{123}^{0}-12c{T}_{123}^{2}\right){n}_{y}=0$$
(B-10)
$$\delta {w}_{,y}=0\mathrm{ or }\left(-2c{M}_{12}^{3}-c{M}_{22}^{3}+c{P}_{1,y}^{3}+c{P}_{2,x}^{3}+\frac{1}{2}{Y}_{11}^{0}+\frac{3}{2}c{Y}_{11}^{2}-\frac{1}{2}{Y}_{22}^{0}-\frac{3}{2}c{Y}_{22}^{2}+2{T}_{123}^{0}-12c{T}_{123}^{2}-\frac{3}{5}c{T}_{111,y}^{3}-\frac{3}{5}c{T}_{222,x}^{3}+\frac{4}{5}c{T}_{112,x}^{3}+\frac{4}{5}{T}_{221,y}^{3}-\frac{c}{5}{T}_{331,y}^{3}-\frac{c}{5}{T}_{332,x}^{3}\right){n}_{x}+\left(c{P}_{1,x}^{3}+c{P}_{2,y}^{3}-3c{P}_{3}^{2}+\frac{1}{2}{Y}_{12}^{0}+\frac{3}{2}c{Y}_{12}^{2}-\frac{3}{5}c{T}_{111,x}^{3}+\frac{4}{5}{T}_{221,x}^{3}-\frac{c}{5}{T}_{331,x}^{3}+\frac{2}{5}c{T}_{222,y}^{3}+\frac{6}{5}c{T}_{333}^{2}-\frac{1}{5}{T}_{333}^{0}-\frac{c}{5}{T}_{112,y}^{3}-\frac{c}{5}{T}_{332,y}^{3}+\frac{2}{5}c{T}_{113}^{2}-\frac{1}{15}{T}_{113}^{0}-\frac{8}{5}c{T}_{223}^{2}+\frac{4}{15}{T}_{223}^{0}\right){n}_{y}=0$$
(B-11)
$$\delta {w}_{,xy}=0\mathrm{ or }\left(c{P}_{3}^{3}-c{P}_{2}^{3}+\frac{3}{5}c{T}_{222}^{3}-\frac{4}{5}c{T}_{112}^{3}+\frac{c}{5}{T}_{332}^{3}\right){n}_{x}+\left(-c{P}_{1}^{3}+\frac{3}{5}c{T}_{111}^{3}-\frac{4}{5}c{T}_{221}^{3}+\frac{c}{5}{T}_{331}^{3}\right){n}_{y}=0$$
(B-12)
$$\delta {w}_{,yy}=0\mathrm{ or }\left(-c{P}_{1}^{3}+\frac{3}{5}c{T}_{111}^{3}-\frac{4}{5}c{T}_{221}^{3}+\frac{c}{5}{T}_{331}^{3}\right){n}_{x}+\left(-c{P}_{2}^{3}-\frac{2}{5}c{T}_{222}^{3}+\frac{c}{5}{T}_{112}^{3}+\frac{c}{5}{T}_{332}^{3}\right){n}_{y}=0$$
(B-13)
$$\delta {w}_{,xx}=0\mathrm{ or }\left(-c{P}_{1}^{3}-\frac{2}{5}c{T}_{111}^{3}+\frac{c}{5}{T}_{221}^{3}+\frac{c}{5}{T}_{331}^{3}\right){n}_{x}+\left(-c{P}_{2}^{3}+\frac{3}{5}c{T}_{222}^{3}-\frac{4}{5}c{T}_{112}^{3}+\frac{c}{5}{T}_{332}^{3}\right){n}_{y}=0$$
(B-14)
$$\delta {\varphi }_{1,x}=0 or \left({P}_{1}^{1}-c{P}_{1}^{3}+\frac{2}{5}{T}_{111}^{1}-\frac{2}{5}c{T}_{111}^{3}-\frac{1}{15}{T}_{221}^{1}+\frac{c}{15}{T}_{221}^{3}-\frac{3}{15}{T}_{331}^{1}+\frac{3}{15}c{T}_{331}^{3}\right){n}_{x}+\left({P}_{2}^{1}-c{P}_{2}^{3}-\frac{1}{2}{Y}_{13}^{1}+\frac{c}{2}{Y}_{13}^{3}-\frac{2}{5}{T}_{222}^{1}+\frac{2}{5}c{T}_{222}^{3}+\frac{8}{15}{T}_{112}^{1}-\frac{8}{15}c{T}_{112}^{3}-\frac{2}{15}{T}_{332}^{1}+\frac{2}{15}c{T}_{332}^{3}\right){n}_{y}=0$$
(B-15)
$$\delta {\varphi }_{1,y}=0\mathrm{ or }\left({P}_{2}^{1}-c{P}_{2}^{3}-\frac{1}{2}{Y}_{13}^{1}+\frac{c}{2}{Y}_{13}^{3}-\frac{2}{5}{T}_{222}^{1}+\frac{2}{5}c{T}_{222}^{3}+\frac{8}{15}{T}_{112}^{1}-\frac{8}{15}c{T}_{112}^{3}-\frac{2}{15}{T}_{332}^{1}+\frac{2}{15}c{T}_{332}^{3}\right){n}_{x}+\left(-\frac{1}{2}{Y}_{23}^{1}+\frac{c}{2}{Y}_{23}^{3}-\frac{1}{5}{T}_{111}^{1}+\frac{1}{5}c{T}_{111}^{3}\right){n}_{y}=0$$
(B-16)
$$\delta {\varphi }_{2,x}=0\mathrm{ or }\left(-\frac{1}{2}{Y}_{13}^{1}+\frac{c}{2}{Y}_{13}^{3}-\frac{1}{5}{T}_{222}^{1}+\frac{1}{5}c{T}_{222}^{3}+\frac{4}{15}{T}_{112}^{1}-\frac{4}{15}c{T}_{112}^{3}-\frac{1}{15}{T}_{332}^{1}+\frac{c}{15}{T}_{332}^{3}\right){n}_{x}+\left({P}_{1}^{1}-c{P}_{1}^{3}+\frac{1}{2}{Y}_{23}^{1}-\frac{c}{2}{Y}_{23}^{3}-\frac{2}{5}{T}_{111}^{1}+\frac{2}{5}c{T}_{111}^{3}+\frac{8}{15}{T}_{221}^{1}-\frac{8}{15}c{T}_{221}^{3}-\frac{2}{15}{T}_{331}^{1}+\frac{2}{15}c{T}_{331}^{3}\right){n}_{y}=0$$
(B-17)
$$\delta {\varphi }_{2,y}=0\mathrm{ or }\left({P}_{1}^{1}-c{P}_{1}^{3}+\frac{1}{2}{Y}_{23}^{1}-\frac{c}{2}{Y}_{23}^{3}-\frac{2}{5}{T}_{111}^{1}+\frac{2}{5}c{T}_{111}^{3}+\frac{8}{15}{T}_{221}^{1}-\frac{8}{15}c{T}_{221}^{3}-\frac{2}{15}{T}_{331}^{1}+\frac{2}{15}c{T}_{331}^{3}){n}_{x}+({P}_{2}^{1}-c{P}_{2}^{3}+\frac{2}{5}{T}_{222}^{1}-\frac{2}{5}c{T}_{222}^{3}-\frac{1}{15}{T}_{112}^{1}+\frac{c}{15}{T}_{112}^{3}-\frac{1}{15}{T}_{332}^{1}+\frac{c}{15}{T}_{332}^{3}+\frac{4}{15}{T}_{221}^{1}-\frac{4}{15}c{T}_{221}^{3}-\frac{1}{15}{T}_{331}^{1}+\frac{c}{15}{T}_{331}^{3}\right){n}_{y}=00$$
(B-18)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M., Bemanadi, N. & Mofidi, M. Free vibration analysis of double-viscoelastic nano-composite micro-plates reinforced by FG-SWCNTs based on the third-order shear deformation theory. Microsyst Technol 29, 71–89 (2023). https://doi.org/10.1007/s00542-022-05390-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-022-05390-w

Navigation