Skip to main content
Log in

Ternary input signal to binary bit output conversion CMOS integrated circuit design using neuron MOSFETs

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Multiple-input floating gate MOSFET also known as a neuron MOSFET or neural transistor and floating gate potential diagrams have been used for the conversion of ternary-valued input into corresponding binary output in CMOS integrated circuit design environments. The method is demonstrated through the design of a circuit for conversion of ternary inputs 00 to − 1− 1 (decimal 0 to − 4) and 00 to 11 (decimal 0 to + 4) into the corresponding binary bits in a standard 0.5 μm digital CMOS technology. The physical design of the circuit is simulated and tested with SPICE using MOSIS BSIM3 model parameters. The maximum propagation delay of the output is nearly 1.2 μs. The conversion method is simple and compatible with the present CMOS process. The circuit could be embedded in digital CMOS VLSI design architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bryant R (1992) Symbolic Boolean manipulation with ordered binary decision diagrams. ACM Comput Surv 24(3):293–318

    Article  Google Scholar 

  • Butler JT (1991) Multiple-valued logic in VLSI. IEEE Computer Society Press Technology Series, Los Alamitos

    Google Scholar 

  • Chou HM, Lee JW, Li Y (2007) A floating gate design for electrostatic discharge protection circuits. Integration VLSI J 40(2):161–166

    Article  Google Scholar 

  • Hurst SL (1984) Multiple-valued logic—its status and future. IEEE Trans Comput C-33:1160–1179

  • Hurst SL (1998) Two decades of multiple-valued logic—an invited tutorial. In: Proceedings of the IEEE international symposium on multiple-valued logic, p 164

  • Lu Z, Fossum JG, Zhang W, Trivedi WP (2008) A novel two transistor floating-body/gate cell for low power nanoscale embedded DRAM. IEEE Trans Electron Devices 55(6):1511–1518

    Article  Google Scholar 

  • Lu Z, Fossum JG, Zhang W, Harris HR, Trivedi WP, Chu M, Thomson SE (2009) A simplified, superior floating body/gate DRAM cell. IEEE Electron Devices Lett 30:282–284

    Article  Google Scholar 

  • Luck A, Jung S, Brederlow R, Thewes R, Goser K, Weber W (2000) On the design robustness of threshold logic gates using multi-input floating gate MOS transistors. IEEE Trans Electron Devices 47(6):1231–1239

    Article  Google Scholar 

  • Shibata T, Ohmi T (1991) An intelligent MOS transistor featuring gate-level weighted sum and threshold operations. In: IEDM Technical Digest, pp 919–922

  • Shibata T, Ohmi T (1992) A functional MOS transistor featuring gate-level weighted sum and threshold operations. IEEE Trans Electron Devices 39(6):1444–1455

    Article  Google Scholar 

  • Shibata T, Ohmi T (1993a) Neuron MOS binary-logic integrated circuits part I: design fundamentals and soft hardware-logic circuit implementation. IEEE Trans Electron Devices 40(3):570–576

    Article  Google Scholar 

  • Shibata T, Ohmi T (1993b) Neuron MOS binary-logic integrated circuits part II: simplifying techniques of circuit configuration and their practical applications. IEEE Trans Electron Devices 40(5):974–979

    Article  Google Scholar 

  • Srivastava A, Venkata HN (2003) quaternary to binary bit conversion CMOS integrated circuit design using multiple-input floating gate MOSFETS. Integr VLSI J 36(3):87–101

    Article  Google Scholar 

  • Srivastava A, Venkatapathy K (1996) Design and implementation of a low power ternary full adder. J VLSI Des 4(1):75–81

    Article  Google Scholar 

  • Srivastava A, Venkata HN, Ajmera PK (2002) A novel scheme for a higher bandwidth sensor readout. In: Proceedings of the SPIE—smart structures and materials 2002: smart electronics, MEMS, and Nanotechnology, vol 4700, pp 17–28, 2002. San Diego

  • Weber W, Prange SJ, Thewes R, Wohlrab E, Luck A (1996) On the application of the neuron MOS transistor principle for modern VLSI design. IEEE Trans Electron Devices 43(10):1700–1708

    Article  Google Scholar 

  • Zhai Y, Abshire PA (2008) Adaptive log domain filters for system identification using floating gate. Analog Integr Circuits Signal Process 56(1–2):23–36

    Article  Google Scholar 

  • Zhao Z, Srivastava A, Peng L, Mohanty S (2018) A multiple input floating gate arithmetic logic unit with a feedback loop for digital calibration. J Low Power Electron 14(4):535–547

    Article  Google Scholar 

  • Zhao Z, Srivastava A, Peng L, Chen Q (2019) Long short-term memory network design for analog computing. ACM J Emerg Technol Comput Syst 15(1):13.1–13.27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A. Ternary input signal to binary bit output conversion CMOS integrated circuit design using neuron MOSFETs. Microsyst Technol 28, 101–108 (2022). https://doi.org/10.1007/s00542-019-04440-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04440-0

Navigation