Skip to main content
Log in

Pulsatile vibrations of viscoelastic microtubes conveying fluid

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, the pulsatile coupled vibrations of a viscoelastic microtube conveying pulsatile fluid is examined for the first time. The problem is grouped into the class of parametrically excited, internally damped, gyroscopic where both Coriolis and parametric forces are present in the presence of viscosity. The Kelvin–Voigt approach of the viscosity, the Euler–Bernoulli for the deformation, the modified couple stress theory for the small size, and Hamilton’s principle for deriving differential equations are used. Parametric frequency–response curves are obtained in the vicinity of the parametric resonance near the critical speed for both subcritical and supercritical regimes. The effect of the flow pulsation on the oscillations is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbasnejad B, Shabani R, Rezazadeh G (2015) Stability analysis of a piezoelectrically actuated micro-pipe conveying fluid. Microfluid Nanofluid 19:577–584

    Article  Google Scholar 

  • Abouelregal AE (2018) Response of thermoelastic microbeams to a periodic external transverse excitation based on MCS theory. Microsyst Technol 24:1925–1933

    Article  Google Scholar 

  • Ahangar S, Rezazadeh G, Shabani R et al (2011) On the stability of a microbeam conveying fluid considering modified couple stress theory. Int J Mech Mater Des 7:327

    Article  Google Scholar 

  • Ahmed MS, Ghommem M and Abdelkefi A (2018) Nonlinear analysis and characteristics of electrically-coupled microbeams under mechanical shock. Microsyst Technol

  • Chen X, Li Y (2018) Size-dependent post-buckling behaviors of geometrically imperfect microbeams. Mech Res Commun 88:25–33

    Article  Google Scholar 

  • Chen X, Lu Y, Li Y (2019a) Free vibration, buckling and dynamic stability of bi-directional FG microbeam with a variable length scale parameter embedded in elastic medium. Appl Math Model 67:430–448

    Article  MathSciNet  Google Scholar 

  • Chen X, Zhang X, Lu Y et al (2019b) Static and dynamic analysis of the postbuckling of bi-directional functionally graded material microbeams. Int J Mech Sci 151:424–443

    Article  Google Scholar 

  • Dai H, Wang L, Ni Q (2015) Dynamics and pull-in instability of electrostatically actuated microbeams conveying fluid. Microfluid Nanofluid 18:49–55

    Article  Google Scholar 

  • Dehrouyeh-Semnani AM, Nikkhah-Bahrami M, Yazdi MRH (2017) On nonlinear stability of fluid-conveying imperfect micropipes. Int J Eng Sci 120:254–271

    Article  MathSciNet  MATH  Google Scholar 

  • Deng J, Liu Y, Liu W (2017) Size-dependent vibration analysis of multi-span functionally graded material micropipes conveying fluid using a hybrid method. Microfluid Nanofluid 21:133

    Article  Google Scholar 

  • Duan K, Li Y, Li L et al (2018a) Diamond nanothread based resonators: ultrahigh sensitivity and low dissipation. Nanoscale 10:8058–8065

    Article  Google Scholar 

  • Duan K, Li Y, Li L et al (2018b) High intrinsic dissipation of graphyne nanotubes. EPL (Europhysics Letters) 122:46001

    Article  Google Scholar 

  • Elwenspoek M, Jansen HV (2004) Silicon micromachining. Cambridge University Press, Cambridge

    Google Scholar 

  • Farajpour A, Farokhi H, Ghayesh MH (2019) Chaotic motion analysis of fluid-conveying viscoelastic nanotubes. Euro J Mechanics-A/Solids 74:281–296

    Article  MathSciNet  MATH  Google Scholar 

  • Farajpour A, Farokhi H, Ghayesh MH, Hussain Sh (2018a) Nonlinear mechanics of nanotubes conveying fluid. Int J Eng Sci 133:132–143

    Article  MathSciNet  MATH  Google Scholar 

  • Farajpour A, Ghayesh MH, Farokhi H (2018b) A review on the mechanics of nanostructures. Int J Eng Sci 133:231–263

    Article  MathSciNet  MATH  Google Scholar 

  • Farajpour MR, Shahidi AR, Tabataba’i-Nasab F, Farajpour A (2018c) Vibration of initially stressed carbon nanotubes under magneto-thermal environment for nanoparticle delivery via higher-order nonlocal strain gradient theory. European Phys J Plus 133(6):219

    Article  Google Scholar 

  • Farajpour A, Ghayesh MH, Farokhi H (2019) Large-amplitude coupled scale-dependent behaviour of geometrically imperfect NSGT nanotubes. Int J Mech Sci 150:510–525

    Article  Google Scholar 

  • Farajpour A, Rastgoo A, Farajpour MR (2017) Nonlinear buckling analysis of magneto-electro-elastic CNT-MT hybrid nanoshells based on the nonlocal continuum mechanics. Compos Struct 180:179–191

    Article  Google Scholar 

  • Farokhi H, Ghayesh MH (2017) Nonlinear thermo-mechanical behaviour of MEMS resonators. Microsyst Technol 23:5303–5315

    Article  Google Scholar 

  • Farokhi H, Ghayesh MH (2018) Nonlinear mechanical behaviour of microshells. Int J Eng Sci 127:127–144

    Article  MathSciNet  MATH  Google Scholar 

  • Farokhi H, Ghayesh MH, Amabili M (2013) Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory. Int J Eng Sci 68:11–23

    Article  MathSciNet  MATH  Google Scholar 

  • Farokhi H, Ghayesh MH, Gholipour A et al (2018) Resonant responses of three-layered shear-deformable microbeams. Microsyst Technol 24:2123–2136

    Article  Google Scholar 

  • Farokhi H, Ghayesh MH, Hussain Sh (2016) Large-amplitude dynamical behaviour of microcantilevers. Int J Eng Sci 106:29–41

    Article  MATH  Google Scholar 

  • Gaafar E, Zarog M (2017) A low-stress and low temperature gradient microgripper for biomedical applications. Microsyst Technol 23:5415–5422

    Article  Google Scholar 

  • Ghayesh MH (2018a) Functionally graded microbeams: simultaneous presence of imperfection and viscoelasticity. Int J Mech Sci 140:339–350

    Article  Google Scholar 

  • Ghayesh MH (2018b) Dynamics of functionally graded viscoelastic microbeams. Int J Eng Sci 124:115–131

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH (2018c) Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams. Appl Math Model 59:583–596

    Article  MathSciNet  Google Scholar 

  • Ghayesh MH (2019) Viscoelastic dynamics of axially FG microbeams. Int J Eng Sci 135:75–85

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Farajpour A (2018a) Nonlinear coupled mechanics of nanotubes incorporating both nonlocal and strain gradient effects. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2018.1473537

    MATH  Google Scholar 

  • Ghayesh MH, Farajpour A (2018b) Nonlinear mechanics of nanoscale tubes via nonlocal strain gradient theory. Int J Eng Sci 129:84–95

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Farajpour A (2018c) Vibrations of shear deformable FG viscoelastic microbeams. Microsyst Technol. https://doi.org/10.1007/s00542-018-4184-8

    Google Scholar 

  • Ghayesh MH, Farokhi H (2015a) Chaotic motion of a parametrically excited microbeam. Int J Eng Sci 96:34–45

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H (2015b) Nonlinear dynamics of microplates. Int J Eng Sci 86:60–73

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Amabili M, Farokhi H (2013a) Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams. Int J Eng Sci 71:1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Amabili M, Farokhi H (2013b) Coupled global dynamics of an axially moving viscoelastic beam. Int J Non-linear Mech 51:54–74

    Article  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H, Amabili M (2013c) Nonlinear dynamics of a microscale beam based on the modified couple stress theory. Compos Part B: Eng 50:318–324

    Article  MATH  Google Scholar 

  • Ghayesh MH, Païdoussis MP, Amabili M (2013d) Nonlinear dynamics of cantilevered extensible pipes conveying fluid. J Sound Vib 332:6405–6418

    Article  Google Scholar 

  • Ghayesh MH, Farokhi H, Amabili M (2014) In-plane and out-of-plane motion characteristics of microbeams with modal interactions. Compos Part B: Eng 60:423–439

    Article  Google Scholar 

  • Ghayesh MH, Farokhi H, Alici G (2016) Size-dependent performance of microgyroscopes. Int J Eng Sci 100:99–111

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H, Farajpour A (2019) Global dynamics of fluid conveying nanotubes. Int J Eng Sci 135:37–57

    Article  MathSciNet  MATH  Google Scholar 

  • Gholipour A, Farokhi H, Ghayesh MH (2015) In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dyn 79:1771–1785

    Article  Google Scholar 

  • Gholipour A, Ghayesh MH, Zander A (2018a) Nonlinear biomechanics of bifurcated atherosclerotic coronary arteries. Int J Eng Sci 133:60–83

    Article  MathSciNet  MATH  Google Scholar 

  • Gholipour A, Ghayesh MH, Zander A, Mahajan R (2018b) Three-dimensional biomechanics of coronary arteries. Int J Eng Sci 130:93–114

    Article  MATH  Google Scholar 

  • Hamzah MH, Karim J, Ralib AAM, et al (2017) Design and analysis of a boosted pierce oscillator using MEMS SAW resonators. Microsyst Technol, 1–8

  • Hari K, Verma SK, Praveen Krishna IR et al (2017) Out-of-plane dual flexure MEMS piezoresistive accelerometer with low cross axis sensitivity. Microsyst Technol, 1–8

  • Hosseini M, Bahaadini R (2016) Size dependent stability analysis of cantilever micro-pipes conveying fluid based on modified strain gradient theory. Int J Eng Sci 101:1–13

    Article  MATH  Google Scholar 

  • Hu K, Dai H, Wang L, et al (2017) Dynamics and stability of pinned-free micropipes conveying fluid. J Mech 1–7

  • Ke L-L, Wang Y-S, Yang J et al (2012) Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory. J Sound Vib 331:94–106

    Article  Google Scholar 

  • Kural S, Özkaya E (2017) Size-dependent vibrations of a micro beam conveying fluid and resting on an elastic foundation. J Vib Control 23:1106–1114

    Article  MathSciNet  Google Scholar 

  • Li L, Hu Y, Li X et al (2016) Size-dependent effects on critical flow velocity of fluid-conveying microtubes via nonlocal strain gradient theory. Microfluid Nanofluid 20(5):76

    Article  Google Scholar 

  • Li C, Cordovilla F, Ocaña JL (2017) The design and analysis of a novel structural piezoresistive pressure sensor for low pressure measurement. Microsyst Technol 23:5677–5687

    Article  Google Scholar 

  • Liu F, Gao S, Niu S, et al (2017) Optimal design of high-g MEMS piezoresistive accelerometer based on Timoshenko beam theory. Microsyst Technol, 1–13

  • Lotfi M, Moghimi Zand M, Isaac Hosseini I et al (2017) Transient behavior and dynamic pull-in instability of electrostatically-actuated fluid-conveying microbeams. Microsyst Technol 23:6015–6023

    Article  Google Scholar 

  • Ma H, Gao X-L, Reddy J (2008) A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids 56:3379–3391

    Article  MathSciNet  MATH  Google Scholar 

  • Menon PK, Nayak J, Pratap R (2017) Sensitivity analysis of an in-plane MEMS vibratory gyroscope. Microsyst Technol, 1–15

  • Paidoussis MP (1998) Fluid-structure interactions: slender structures and axial flow. Academic Press, London

    Google Scholar 

  • Pasharavesh A, Ahmadian MT, Zohoor H (2016) Coupled electromechanical analysis of MEMS-based energy harvesters integrated with nonlinear power extraction circuits. Microsyst Technol, 1–18

  • Rajaei A, Vahidi-Moghaddam A, Ayati M, et al (2018) Integral sliding mode control for nonlinear damped model of arch microbeams. Microsyst Technol, 1–12

  • Samaali H, Najar F (2017) Design of a capacitive MEMS double beam switch using dynamic pull-in actuation at very low voltage. Microsyst Technol 23:5317–5327

    Article  Google Scholar 

  • Saxena S, Sharma R, Pant BD (2017) Dynamic characterization of fabricated guided two beam and four beam cantilever type MEMS based piezoelectric energy harvester having pyramidal shape seismic mass. Microsyst Technol 23:5947–5958

    Article  Google Scholar 

  • Setoodeh A, Afrahim S (2014) Nonlinear dynamic analysis of FG micro-pipes conveying fluid based on strain gradient theory. Compos Struct 116:128–135

    Article  Google Scholar 

  • Tang M, Ni Q, Wang L et al (2014) Nonlinear modeling and size-dependent vibration analysis of curved microtubes conveying fluid based on modified couple stress theory. Int J Eng Sci 84:1–10

    Article  MathSciNet  MATH  Google Scholar 

  • Teh KS, Lin L (1999) Time-dependent buckling phenomena of polysilicon micro beams. Microelectron J 30:1169–1172

    Article  Google Scholar 

  • Tuck K, Jungen A, Geisberger A et al (2005) A study of creep in polysilicon MEMS devices. J Eng Mater Technol 127:90–96

    Article  Google Scholar 

  • Wang L (2010) Size-dependent vibration characteristics of fluid-conveying microtubes. J Fluids Struct 26:675–684

    Article  Google Scholar 

  • Wang L, Zhang W, Liu YA et al (2017) Impact analysis of convected motion on the carrier frequency of a carrier-driven gyroscope signal. Microsyst Technol 23:5805–5813

    Article  Google Scholar 

  • Xi Z, Cao Y, Yu P et al (2016) The simulation and visual test contact process of a MEMS inertial switch with flexible electrodes. Microsyst Technol 22:2035–2042

    Article  Google Scholar 

  • Xia W, Wang L (2010) Microfluid-induced vibration and stability of structures modeled as microscale pipes conveying fluid based on non-classical Timoshenko beam theory. Microfluid Nanofluid 9:955–962

    Article  Google Scholar 

  • Yang T-Z, Ji S, Yang X-D et al (2014) Microfluid-induced nonlinear free vibration of microtubes. Int J Eng Sci 76:47–55

    Article  MATH  Google Scholar 

  • Yin L, Qian Q, Wang L (2011) Strain gradient beam model for dynamics of microscale pipes conveying fluid. Appl Math Model 35:2864–2873

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mergen H. Ghayesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Comparison study

Appendix: Comparison study

The critical fluid speeds are compared to those available in the literature employing the classical beam theory. A closed-form solution was obtained by Li et al. (2016) for the critical speed of fluid-conveying tubes at nanoscale levels. Ignoring nonlinear terms, couple-stress effects, flow pulsation and external loading, one obtains the following equation from Eqs. (11) and (12)

$$ EI\frac{{\partial^{4} v}}{{\partial x^{4} }} + \left( {m + M} \right)\frac{{\partial^{2} v}}{{\partial t^{2} }} + 2MU\frac{{\partial^{2} v}}{\partial x\partial t} + MU^{2} \frac{{\partial^{2} v}}{{\partial x^{2} }} = 0, $$
(19)

For this special case, the transverse deflection of the tube can be written as

$$ v = \sum\limits_{k = 1}^{\infty } {V_{k} \sin \left( {\frac{k\pi x}{L}} \right)} . $$
(20)

Substituting the above relation into Eq. (19), one obtains

$$ U_{cr} = \sqrt {\frac{{k^{2} \pi^{2} EI}}{{ML^{2} }}} , $$
(21)

It is worth mentioning that the flow-profile-modification factor is neglected for comparison purposes. Equation (21) for the critical fluid speed perfectly matches that determined in the literature for macroscale tubes conveying fluid flow of a constant velocity (Li et al. 2016); size effects are ignored.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghayesh, M.H., Farokhi, H. & Farajpour, A. Pulsatile vibrations of viscoelastic microtubes conveying fluid. Microsyst Technol 25, 3609–3623 (2019). https://doi.org/10.1007/s00542-019-04381-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04381-8

Navigation