Skip to main content
Log in

Design and analysis of a boosted pierce oscillator using MEMS SAW resonators

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper highlights the design and analysis of a pierce oscillator circuit for CMOS MEMS surface acoustic wave resonators. The boosted pierce topology using two, three-stage cascode amplifiers provides sufficient gain to counteract the high insertion losses of − 65 dB at 1.3 GHz of the SAW resonator. For accurate prediction of the oscillator’s performance before fabrication, circuit design utilized touchstone S2P measurement results of the MEMS SAW resonator, which provides better results compared to the conventional method of using equivalent circuit simulations. This circuit was designed using Silterra’s 0.13 μm CMOS process. It has low power consumption of 1.52 mW with high voltage swing 0.10–0.99 V. All simulations were conducted using Cadence Design Systems and results indicate that phase noise of 92.63 dBc at 1 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bassiri-Gharb N (2008) Piezoelectric MEMS: materials and devices. In: Safari A, Akdogan EK (eds) Piezoelectric and acoustic materials for transducer applications. Springer Science & Business Media, Berlin. https://doi.org/10.1007/978-0-387-76540-2_20

    Google Scholar 

  • Campanella H (2010) Acoustic wave and electromechanical resonators: concept to key applications (integrated microsystems). Artech House, Norwood, pp 1–364

    Google Scholar 

  • Chengjie Z, Van Der Spiegel J, Piazza G (2010) 105-GHz CMOS oscillator based on lateral-field-excited piezoelectric AlN contour-mode MEMS resonators. Ultrason Ferroelectr Freq Control IEEE Trans 57(1):82–87

    Article  Google Scholar 

  • Chengjie Z, Van der Spiegel J, Piazza G (2011) Dual-mode resonator and switchless reconfigurable oscillator based on piezoelectric AlN MEMS technology. Electron Devices IEEE Trans 58(10):3599–3603

    Article  Google Scholar 

  • Enz CC, Kaiser A, Rai S, Otis B (2013) Low-power quadrature oscillator design using BAW resonators. In: MEMS-based circuits and systems for wireless communication. Springer US, pp 187–205

  • Gill GS, Prasad M (2016) Development of film bulk acoustic wave resonator: a review. Sens Lett 14(4):346–361

    Article  Google Scholar 

  • Gong S, Kuo NK, Piazza G (2012) GHz high- lateral overmoded bulk acoustic-wave resonators using epitaxial SiC thin film. J Microelectromech Syst 21(2):253–255. https://doi.org/10.1109/JMEMS.2011.2179017

    Article  Google Scholar 

  • Hashimoto K-Y, Omori T, Yamaguchi M (2009) Requirements for piezoelectric thin film applications to radio frequency acoustic wave devices. Ferroelectrics 380(1):73–80. https://doi.org/10.1080/00150190902873238

    Article  Google Scholar 

  • Karim J, Nordin AN (2016) Implementation of CMOS oscillator for CMOS SAW resonator. In: 2016 symposium on design, test, integration and packaging og MEMS and MOEMS, pp 7–11

  • Karim J, Nordin AN, Alam AZ (2012) Design of a pierce oscillator for CMOS SAW resonator. In: 2012 international conference on computer and communication engineering (ICCCE), pp 490–493

  • Lavasani HM, Abdolvand R, Ayazi F (2015) Single-resonator dual-frequency AIN-on-Si MEMS oscillators. IEEE Trans Ultrason Ferroelectr Freq Control 62(5):802–813

    Article  Google Scholar 

  • Li M-H, Chen C-Y, Li C-S, Chin C-H, Chen C-C, Li S-S (2013) Foundry-CMOS integrated oscillator circuits based on ultra-low power ovenized CMOS-MEMS resonators. pp 475–478. https://doi.org/10.1109/IEDM.2013.6724654

  • Li M, Member S, Chen C, Li C, Member S (2015) A monolithic CMOS-MEMS oscillator based on an ultra-low-power ovenized micromechanical resonator. J Microelectromech Syst 24(2):360–372

    Article  Google Scholar 

  • Li M-H, Tseng K-J, Liu C-Y, Chen C-Y, Li S-S (2016) An 8V 50μW 1.2 MHz CMOS-MEMS oscillator, Frequency Control Symposium (IFCS), 2016 IEEE International. IEEE, pp 16–18. https://doi.org/10.1109/FCS.2016.7563591

  • Morkoç H (2008) Zinc oxide: fundamentals, materials and device technology. Wiley, New York, pp 1–76

    Google Scholar 

  • Neculoiu D, Müller A, Deligeorgis G, Dinescu A, Stavrinidis A, Vasilache D et al (2009) AlN on silicon based surface acoustic wave resonators operating at 5 GHz. Electron Lett 45(23):1196–1197. https://doi.org/10.1049/el.2009.2520

    Article  Google Scholar 

  • Nordin AN, Zaghloul ME (2007) Modeling and fabrication of CMOS surface acoustic wave resonators. IEEE Trans Microw Theory Tech 55(5):992–1001. https://doi.org/10.1109/TMTT.2007.895408

    Article  Google Scholar 

  • Nordin AN, Zaghloul ME (2008) Design, implementation and characterization of temperature compensated SAW resonators in CMOS technology for RF oscillators. The George Washington University, Washington

    Google Scholar 

  • Otis B (2002) The design and implementation of an ultra low power RF oscillator using micromachined resonators. Master of Science Plan II Berkeley Department of Electrical Engineering and Computer Science, p 77

  • Rai SS, Otis BP (2008) A 600 #956; W BAW-tuned quadrature VCO using source degenerated coupling. IEEE J Solid-State Circuits 43(1):300–305

    Article  Google Scholar 

  • Ralib AAM, Nordin AN (2014) Silicon compatible acoustic wave resonators: design, fabrication and performance. IIUM Eng J 15(2). http://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/437. Accessed 20 July 2016

  • Ralib AAM, Nordin AN, Zahirul Alam AHM, Hashim Uda (2014) Piezoelectric thin films for double electrode MEMS surface acoustic wave (SAW) resonator. Microsyst Technol. https://doi.org/10.1007/s00542-014-2319-0

    Google Scholar 

  • Rinaldi M, Zuniga C, Zuo C, Piazza G (2010) Super-high-frequency two-port AlN contour-mode resonators for RF applications. IEEE Trans Ultrason Ferroelectr Freq Control 57:38–45. https://doi.org/10.1109/TUFFC.2010.1376

    Article  Google Scholar 

  • Roy S et al (2016) Design of a MEMS-based oscillator using 180 nm CMOS technology. PLoS One 11(7):e0158954

    Article  Google Scholar 

  • Ruffieux D et al (2014) A versatile timing microsystem based on wafer-level packaged XTAL/BAW resonators with sub-W RTC mode and programmable HF clocks. IEEE J Solid-State Circuits 49(1):212–222

    Article  Google Scholar 

  • Salvia JC, Melamud R, Chandorkar SA, Lord SF, Kenny TW (2010) Real-time temperature compensation of MEMS oscillators using an integrated micro-oven and a phase-locked loop. Microelectromech Syst J 19(1):192–201

    Article  Google Scholar 

  • Sankaragomathi K et al (2013) A 220 dB FOM, 1.9 GHz oscillator using a phase noise reduction technique for high-Q oscillators. In: 2013 IEEE radio frequency integrated circuits symposium (RFIC). IEEE

  • Seth S, Wang S, Kenny T, Murmann B (2012) A-131-dBc/Hz, 20-MHz MEMS oscillator with a 6.9-mW, 69-kohm, gain-tunable CMOS TIA. In: 2012 Proceedings of the ESSCIRC (ESSCIRC), pp 249–252

  • Uranga A, Verd J, Barniol N (2015) CMOS–MEMS resonators: from devices to applications. Microelectron Eng 132:58–73

    Article  Google Scholar 

  • Yuan Q, Peng B, Luo W, Zhao J, Yang J, Yang F (2015) Frequency stability of RF oscillator with MEMS-based encapsulated resonator. In: 2015 transducers—2015 18th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS), pp 1969–1972

  • Zuo C, Spiegel JVD, Piazza G (2010) 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators. IEEE Trans Ultrason Ferroelectr Freq Control 57(1):82–87

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the Malaysian Ministry of Higher Education through IIUM—FRGS14-111-0352 and UiTM—FRGS/1/2015/TK04/UITM/02/19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anis Nurashikin Nordin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamzah, M.H., Karim, J., Ralib, A.A.M. et al. Design and analysis of a boosted pierce oscillator using MEMS SAW resonators. Microsyst Technol 24, 587–594 (2018). https://doi.org/10.1007/s00542-017-3627-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3627-y

Navigation