Skip to main content
Log in

Piezoelectric thin films for double electrode CMOS MEMS surface acoustic wave (SAW) resonator

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

CMOS integration for RF-MEMS is desired to yield compact, low-power and portable devices. In this work, we illustrate the usage of double electrode CMOS SAW resonators using both ZnO and AlN as its piezoelectric material. Double electrode transducers were chosen, as they are better at suppressing undesired acoustic reflections compared to single electrodes. The structure and dimension of the device is based on 0.35 μm CMOS process where the IDTs are fabricated using standard CMOS fabrication process. 2D Finite element modeling of the CMOS SAW resonator using COMSOL Multiphysics® is presented. Two-step eigenfrequency and frequency domain analyses were performed. The acoustic velocities generated are 3,925 and 5,953 m/s for ZnO and AlN CMOS SAW resonator respectively. Higher acoustic displacement and surface potential were observed in ZnO compared to AlN. It can be concluded that ZnO thin films have higher electromechanical coupling coefficients and are more efficient than AlN thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baca AG, Heller EJ, Hietala VM, Casalnuovo SA, Frye-Mason GC, Klem JF, Drummond TJ (1999) Development of a GaAs monolithic surface acoustic wave integrated circuit. IEEE J Solid State Circuits 34(9):1254–1258. doi:10.1109/4.782084

    Article  Google Scholar 

  • Baron T, Hermelin D, Romand JP, Alzuaga S, Queste S, Rauch JY, et al (2010) SAW pressure sensor on quartz membrane lapping. 10ème Congrès Français d’Acoustique

  • Bassiri-Gharb N (2008) Piezoelectric MEMS: materials and devices. In: Safari A, Akdoğan EK (eds) Piezoelectric and acoustic materials for transducer applications. Springer, US. pp 413–430. doi:10.1007/978-0-387-76540-2_20

  • Bu G, Ciplys D, Shur MS, Namkoong G, Doolittle WA, Hunt WD (2004) Leaky surface acoustic waves in Z-LiNbO[sub 3] substrates with epitaxial AIN overlays. Appl Phys Lett 85(15):3313. doi:10.1063/1.1805705

    Article  Google Scholar 

  • Buff W, Rusko M, Goroll M, Ehrenpfordt J, Vandahl T (1997). Universal pressure and temperature SAW sensor for wireless applications (Vol. 1, pp. 359–362). Presented at the Ultrasonics Symposium, 1997. Proceedings 1997 IEEE. doi:10.1109/ULTSYM.1997.663039

  • Campbell C (1998) Surface Acoustic Wave Devices for Mobile and Wireless Communications. Four-Volume Set, Academic Pr

    Google Scholar 

  • De Guglielmo D, Anastasi G, Seghetti A (2014) From IEEE 802.15.4 to IEEE 802.15.4e: a step towards the internet of things, chapter 10. In: Gaglio S, Lo Re G (eds) Advances onto the internet of things, series on advances in intelligent systems and computing vol 260. Springer International Publishing, pp 135–152. doi:10.1007/978-3-319-03992-3_10

  • De Vries AJ, Miller RL, Wojcik TS (1972) Reflection of a surface wave from three types of ID transducers 353–358

  • Hashimoto KY (2000) Surface acoustic wave devices in telecommunications. Springer Verlag, New York

    Book  MATH  Google Scholar 

  • Hikita M, Takubo C, Asai K (2000) New high performance SAW convolvers used in high bit rate and wideband spread spectrum CDMA communications system. IEEE Trans Ultrason Ferroelectr Freq Control 47(1):233–241. doi:10.1109/58.818766

    Article  Google Scholar 

  • Hunter IC, Billonet L, Jarry B, Guillon P (2002) Microwave filters-applications and technology. IEEE Trans Microw Theory Tech 50(3):794–805. doi:10.1109/22.989963

    Article  Google Scholar 

  • Kaletta UC, Santos PV, Wolansky D, Scheit A, Fraschke M, Wipf C et al (2013) Monolithic integrated SAW filter based on AlN for high-frequency applications. Semicond Sci Technol 28(6):065013. doi:10.1088/0268-1242/28/6/065013

    Article  Google Scholar 

  • Kushibiki J, Ohashi Y, Ono Y (2000) Evaluation and selection of LiNbO(3) and LiTaO(3) substrates for SAW devices by the LFB ultrasonic material characterization system. IEEE Trans Ultrason Ferroelectr Freq Control 47(4):1068–1076. doi:10.1109/58.852091

    Article  Google Scholar 

  • Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391(5):1509–1519. doi:10.1007/s00216-008-1911-5

    Article  Google Scholar 

  • Md-Ralib A-A, Nordin AN, Salleh H, Othman R (2012) Fabrication of aluminium doped zinc oxide piezoelectric thin film on a silicon substrate for piezoelectric MEMS energy harvesters. Microsyst Technol 18(11):1761–1769. doi:10.1007/s00542-012-1550-9

    Article  Google Scholar 

  • Morgan DP (2007) Surface acoustic wave filters

  • Morkoç H, Özgür Ü (2009) Zinc oxide. Wiley-VCH

  • Nakanishi H, Nakamura H, Tsurunari T (2010) Good temperature coefficient of frequency SAW resonator on a SiO 2/Al/LiNbO 3 structure. Ius

  • Neculoiu D, Müller A, Deligeorgis G, Dinescu A, Stavrinidis A, Vasilache D et al (2009) AlN on silicon based surface acoustic wave resonators operating at 5 GHz. Electron Lett 45(23):1196–1197. doi:10.1049/el.2009.2520

    Article  Google Scholar 

  • Nomura T, Takebayashi R (1998) Chemical sensor based on surface acoustic wave resonator using Langmuir-Blodgett film. Ultrason Ferroelectr Freq Control 45(5):1261–1265

    Article  Google Scholar 

  • Nordin AN (2008) Design, Implementation and Characterization of Temperature Compensated SAW Resonators in CMOS Technology for RF Oscillators. ProQuest

  • Nordin AN, Zaghloul ME (2007) Modeling and fabrication of CMOS surface acoustic wave resonators. Microw Theory Tech IEEE Trans 55(5):992–1001. doi:10.1109/TMTT.2007.895408

    Article  Google Scholar 

  • Rajesh KB (2013) Impulse modelled response of a 300 MHz ST-quartz SAW device for sensor specific applications. J Environ Nanotechnol 2:15–21. doi:10.13074/jent.2013.02.nciset33

    Article  Google Scholar 

  • Ralib AAM, Nordin AN (2013) Comparative analysis of zinc oxide and aluminium doped ZnO for GHz CMOS MEMS surface acoustic wave resonator. Design Test, Integration and Packaging of MEMS/MOEMS (DTIP) Symposium on, 1–6

  • Ralib AAM, Nordin AN, Hashim U (2013) Finite element modeling of SAW resonator in CMOS technology for single and double interdigitated electrode (IDT) structure (pp. 1–4). Presented at the 2013 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), IEEE doi:10.1109/RSM.2013.6706458

  • Ramli NA, Nordin AN (2011) Design and modeling of MEMS SAW resonator on Lithium Niobate (pp. 1–4). Presented at the Mechatronics (ICOM), 2011 4th International Conference On doi:10.1109/ICOM.2011.5937127

  • Rocha-Gaso MI, March-Iborra C, Montoya-Baides Á (2009) Surface generated acoustic wave biosensors for the detection of pathogens: a review. Sensors 9(7):5740–5769

    Article  Google Scholar 

  • Ruppel CW, Dill R, Fischerauer A, Fischerauer G, Gawlik A, Machui J et al (1993) SAW devices for consumer communication applications. IEEE Trans Ultrason Ferroelectr Freq Control 40(5):438–452. doi:10.1109/58.238094

    Article  Google Scholar 

  • Ruppel CCW, Reindl L, Weigel R (2002a) SAW devices and their wireless communications applications. IEEE Microw Mag 3(2):65–71

    Article  Google Scholar 

  • Ruppel CCW, Reindl L, Weigel R (2002b) SAW devices and their wireless communications applications. Microwave Magazine, IEEE 3(2):65–71. doi:10.1109/MMW.2002.1004053

    Article  Google Scholar 

  • Sadek AZ, Wlodarski W, Shin K, Kaner RB, Kalantar-zadeh K (2006) A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite. Nanotechnology 17(1):4488–4492. doi:10.1088/0957-4484/17/17/034

    Article  Google Scholar 

  • Springer A, Huemer M, Reindl L, Ruppel CCW, Pohl A, Seifert F et al (1998) A robust ultra-broad-band wireless communication system using SAW chirped delay lines. Microw Theory Tech IEEE Trans 46(12):2213–2219. doi:10.1109/22.739199

    Article  Google Scholar 

  • Stefanescu A, Neculoiu D, Müller A, Dinescu A (2011) Analysis of GaN Based SAW Resonators including FEM Modeling. Romanian J Inf Sci Technol 14(4):334–345

    Google Scholar 

  • Tanski WJ (1979) Surface acoustic wave resonators on quartz. Sonics Ultrason IEEE Trans 26(2):93–104. doi:10.1109/T-SU.1979.31073

    Article  Google Scholar 

  • Vellekoop MJ, Lubking GW, Venema A (1994) Acoustic-wave based monolithic microsensors. Ultrason Symp 1:565–574

    Article  Google Scholar 

  • Weigel R, Morgan DP, Owens JM, Ballato A, Lakin KM, Hashimoto K, Ruppel CCW (2002) Microwave acoustic materials, devices, and applications. Microwave Theory and Techniques, IEEE Transactions on 50(3):738–749. doi:10.1109/22.989958

    Article  Google Scholar 

  • Xu J (2006) Aluminum nitride thin film based acoustic wave sensors for biosensing applications. ProQuest Dissertations and Theses; Thesis (PhD)–Wayne State University, 1

Download references

Acknowledgments

This research was supported by Exploratory Research Grant Scheme: ERGS 11-009-009 under the Ministry of Higher Education Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anis Nurashikin Nordin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ralib, A.A.M., Nordin, A.N., Alam, A.Z. et al. Piezoelectric thin films for double electrode CMOS MEMS surface acoustic wave (SAW) resonator. Microsyst Technol 21, 1931–1940 (2015). https://doi.org/10.1007/s00542-014-2319-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2319-0

Keywords

Navigation