Skip to main content

Advertisement

Log in

Improved energy harvesting using well-aligned ZnS nanoparticles in bulk-heterojunction organic solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc sulphide (ZnS) nanoparticles (NPs) were synthesized by low temperature colloidal chemistry to produce stable zinc blend structure. The metallic ZnS NPs were incorporated into poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61-butyric acid methyl ester (PCBM) blend photoactive layer to improve the overall performance of organic solar cells (OSC). The newly fabricated devices have exhibited enhanced photocurrent which is likely to come from utilizing the near-field and light scattering effects due to the NPs. The short-circuit current density of the best solar cell was enhanced to as high as 15.65 mA cm−2 followed by 51% and 4.0% maximum fill-factor (FF) and power conversion efficiency (PCE), respectively. This enhancement is very comparable to those obtained from the use of expensive plasmonic gold and silver nanoparticles. The current results are encouraging to improve the performance of OSC through a facile yet cost-effective and environmentally friendly approach of metal nanoparticles synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15(10), 1617–1622 (2005)

    Article  CAS  Google Scholar 

  2. A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, S. Yoshikawa, High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer. Appl. Phys. Lett. 90(16), 163517 (2007)

    Article  Google Scholar 

  3. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles, ed. by V. Dusastre (Nature Publishing Group, Berlin, 2011), pp. 80–84

    Google Scholar 

  4. M.S.G. Hamed, S.O. Oseni, A. Kumar, Nickel sulphide nano-composite assisted hole transport in thin film polymer solar cells. Sol. Energy 195, 310–317 (2020)

    Article  CAS  Google Scholar 

  5. S.K. Jang, S.C. Gong, H.J. Chang, Effects of various solvent addition on crystal and electrical properties of organic solar cells with P3HT: PCBM active layer. Synth. Met. 162(5–6), 426–430 (2012)

    Article  CAS  Google Scholar 

  6. G. Zhao, Y. He, Y. Li, 6.5% efficiency of polymer solar cells based on poly (3-hexylthiophene) and indene–\(\text{ C }_{60}\) bisadduct by device optimization. Adv. Mater. 22(39), 4355–4358 (2010)

    Article  CAS  Google Scholar 

  7. T.A. Kareem, A.A. Kaliani, Fabrication and characterization of ZnSCubic: P3HT, ZnSHexa: P3HT and ZnSHexa: P3HT: PVA-Ag bulk heterojunction solar cells. J. Nano Electr. Phys. 7(2), 1–6 (2015)

    Google Scholar 

  8. L. Lu, Z. Luo, T. Xu, L. Yu, Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett. 13(1), 59–64 (2012)

    Article  Google Scholar 

  9. M.W. Dlamini, G.T. Mola, Near-field enhanced performance of organic photovoltaic cells. Physica B 552, 78–83 (2019)

    Article  CAS  Google Scholar 

  10. E.A.A. Arbab, G.T. Mola, Metals decorated nanocomposite assisted charge transport in polymer solar cell. Mater. Sci. Semicond. Process. 91, 1–8 (2019)

    Article  CAS  Google Scholar 

  11. D.D. Fung, L. Qiao, W.C. Choy, C. Wang, E.I. Wei, F. Xie, S. He, Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer. J. Mater. Chem. 21(41), 16349–16356 (2011)

    Article  CAS  Google Scholar 

  12. Y.Y. She, Y.A.N.G. Juan, K.Q. Qiu, Synthesis of ZnS nanoparticles by solid–liquid chemical reaction with ZnO and Na2S under ultrasonic. Trans. Nonferr. Metals Soc. China 20, s211–s215 (2010)

    Article  CAS  Google Scholar 

  13. M. Bredol, K. Matras, A. Szatkowski, J. Sanetra, A. Prodi-Schwab, P3HT/ZnS: a new hybrid bulk heterojunction photovoltaic system with very high open circuit voltage. Sol. Energy Mater. Sol. Cells 93(5), 662–666 (2009)

    Article  CAS  Google Scholar 

  14. N. Saravanan, G.B. Teh, S.Y.P. Yap, K.M. Cheong, Simple synthesis of ZnS nanoparticles in alkaline medium. J. Mater. Sci. 19(12), 1206–1208 (2008)

    CAS  Google Scholar 

  15. P. D’Amico, A. Calzolari, A. Ruini, A. Catellani, New energy with ZnS: novel applications for a standard transparent compound. Sci. Rep. 7(1), 16805 (2017)

    Article  Google Scholar 

  16. Y. Zhao, Y. Zhang, H. Zhu, G.C. Hadjipanayis, J.Q. Xiao, Low-temperature synthesis of hexagonal (wurtzite) ZnS nanocrystals. J. Am. Chem. Soc. 126(22), 6874–6875 (2004)

    Article  CAS  Google Scholar 

  17. P. Kannappan, R. Dhanasekaran, Structural and optical characterization of ZnS nanoparticles synthesized by low temperature. Int. J. Recent Technol. Eng. 7(4S), 26–28 (2018)

    Google Scholar 

  18. C.S. Pathak, M.K. Mandal, V. Agarwala, Synthesis and characterization of zinc sulphide nanoparticles prepared by mechanochemical route. Superlatt. Microstruct. 58, 135–143 (2013)

    Article  CAS  Google Scholar 

  19. D. Bartesaghi, I. del Carmen Pérez, J. Kniepert, S. Roland, M. Turbiez, D. Neher, L.J.A. Koster, Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nat. Commun. 6, 7083 (2015)

    Article  CAS  Google Scholar 

  20. G.F. Dibb, F.C. Jamieson, A. Maurano, J. Nelson, J.R. Durrant, Limits on the fill factor in organic photovoltaics: distinguishing nongeminate and geminate recombination mechanisms. J. Phys. Chem. Lett. 4(5), 803–808 (2013)

    Article  CAS  Google Scholar 

  21. S. Albrecht, S. Janietz, W. Schindler, J. Frisch, J. Kurpiers, J. Kniepert, S. Inal, P. Pingel, K. Fostiropoulos, N. Koch, D. Neher, Fluorinated copolymer PCPDTBT with enhanced open-circuit voltage and reduced recombination for highly efficient polymer solar cells. J. Am. Chem. Soc. 134(36), 14932–14944 (2012)

    Article  CAS  Google Scholar 

  22. G. Lakhwani, A. Rao, R.H. Friend, Bimolecular recombination in organic photovoltaics. Annu. Rev. Phys. Chem. 65, 557–581 (2014)

    Article  CAS  Google Scholar 

  23. R. Mauer, I.A. Howard, F. Laquai, Effect of nongeminate recombination on fill factor in polythiophene/methanofullerene organic solar cells. J. Phys. Chem. Lett 1(24), 3500–3505 (2010)

    Article  CAS  Google Scholar 

  24. M.D. Brown, T. Suteewong, R.S.S. Kumar, V. D’Innocenzo, A. Petrozza, M.M. Lee, U. Wiesner, H.J. Snaith, Plasmonic dye-sensitized solar cells using core–shell metal–insulator nanoparticles. Nano Lett. 11(2), 438–445 (2010)

    Article  Google Scholar 

  25. K. Ueno, T. Oshikiri, Q. Sun, X. Shi, H. Misawa, Solid-state plasmonic solar cells. Chem. Rev. 118(6), 2955–2993 (2017). https://doi.org/10.1021/acs.chemrev.7b00235

    Article  CAS  Google Scholar 

  26. V.D. Mihailetchi, J. Wildeman, P.W.M. Blom, Space-charge limited photocurrent. Phys. Rev. Lett. 94(12), 126602 (2005)

    Article  CAS  Google Scholar 

  27. M. Lenes, M. Morana, C.J. Brabec, P.W. Blom, Recombination-limited photocurrents in low bandgap polymer/fullerene solar cells. Adv. Funct. Mater. 19(7), 1106–1111 (2009)

    Article  CAS  Google Scholar 

  28. S.O. Oseni, G.T. Mola, The effect of uni- and binary solvent additives in PTB7:PC61BM based solar cells. Sol. Energy 150, 66–72 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Research Foundation (NRF), South Africa. The authors also grateful to members of staff of Materials Characterisation section at National Metrology Institute of South Africa (NMISA), Microscopy and Microanalysis Unit (MMU) at the School of Life Sciences in the University of KwaZulu-Natal for SEM, XRD and EDX analysis.

Funding

Funding was provided by National Research Foundation South Africa (Grant No. 113831).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genene T. Mola.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dlamini, M.W., Hamed, M.S.G., Mbuyise, X.G. et al. Improved energy harvesting using well-aligned ZnS nanoparticles in bulk-heterojunction organic solar cell. J Mater Sci: Mater Electron 31, 9415–9422 (2020). https://doi.org/10.1007/s10854-020-03481-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03481-w

Navigation