Skip to main content
Log in

Magnetic field assisted bonding technology for released micro actuator and mirror surface

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A magnetic field pulling-force assisted bonding technology is reported, which is used to bond a mirror plate with a released microactuator using adhesive. This bonding technology is not sensitive to the micromachining process, i.e., any process for microactuator fabrication containing the ferromagnetic structure layer can be used and bonded with a high surface quality mirror plate after released. The conventional wafer bonding technology bonds unreleased actuator with a mirror plate but it limits to the process compatible with the wafer bonding with a releasing step suitable for wafer bonding. Consequently not all processes (such as those mature and commercially available, and those being able to generate large displacement) can be used to fabricate micromirrors. The bonding technology proposed in this paper applies non-touching magnetic field pulling-force, instead of conventional compression mechanical force through touching, to bring the microactutor and a mirror plate in contact for bonding such as to avoid: (1) any plastic deformation or damage to the released micro actuator; and (2) the risk of sticking the actuator moving part to the substrate due to the adhesive squeezed out from the bonding surfaces. The bonding method is introduced and the critical parameters of the bonding method, i.e., distance between the magnet to the actuator is determined through simulations. A bonding mechanism is built and two different designs are bonded. Bonding results are measured, which verifies the bonding method. The bonding is characterized to have a strength of withstanding vibration for a few hours in frequency 20–200 Hz with 2–5 g acceleration and surviving in the temperature of −30 to 80 °C. After bonding a mirror plate with 15.6 m of the curvature radius and 2 nm of the roughness, the bonded micromirror is tested to have a quasi-static displacement of 120 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ataman Ç, Lani S, Noell W, de Rooij N (2013) A dual-axis pointing mirror with moving-magnet actuation. J Micromechanics Microengineering 23(2):25002

    Article  Google Scholar 

  • Bai Y, Yeow JTW, Wilson BC (2010) Design, fabrication, and characterization of a 2-D SOI MEMS micromirror with sidewall electrodes for confocal MACROscope imaging, vol 19, no 3. Ph.D thesis, University of Waterloo, pp 619–631

  • Bai Y, Pallapa M, Chen A, Constantinou P, Damaskinos S, Wilson BC, Yeow JTW (2012) A 2D MEMS mirror with sidewall electrodes applied for confocal MACROscope imaging. J Microscopy 245(2):210–220

    Article  Google Scholar 

  • Chao F, He S, Chong J, Ben Mrad R, Feng L (2011) Development of a micromirror based laser vector scanning automotive HUD. In: 2011 IEEE International Conference on Mechatronics and Automation ICMA, pp 75–79

  • Cho HJ, Ahn CH (2002) Electroplated permanent magnet arrays. Structure 11(1):78–84

    Google Scholar 

  • Cho I-J, Yoon E (2009) A low-voltage three-axis electromagnetically actuated micromirror for fine alignment among optical devices. J Micromechanics Microengineering 19(8):85007

    Article  Google Scholar 

  • Chong J, He S, Ben R (2012) Mrad, “Development of a vector display system based on a surface-micromachined micromirror”. IEEE Trans Ind Electron 59(12):4863–4870

    Article  Google Scholar 

  • Cowen A, Dudley B, Hill E, Walters M, Wood R (2009) MetalMUMPs design handbook a MUMPs ® process, pp 1–39

  • Debray A, Ludwig A, Bourouina T, Asaoka A, Tiercelin N, Reyne G, Oki T, Quandt E, Muro H, Fujita H (2004) Application of a multilayered magnetostrictive film to a micromachined 2-D optical scanner. J Microelectromechanical Syst 13(2):264–271

    Article  Google Scholar 

  • Fan C, He S (2015) A two-row interdigitating-finger repulsive-torque electrostatic actuator and its application to micromirror vector display. J Microelectromechanical Syst 24(6):2049–2061

    Article  MathSciNet  Google Scholar 

  • He S, Chang JS (2009) Experimental verification of an out-of-plane repulsive-force electrostatic actuator using a macroscopic mechanism. Microsyst Technol 15(3):453–461

    Article  Google Scholar 

  • He S, Mrad RB (2003) Development of a novel translation micromirror for adaptive optics. Proc SPIE 5264:154–161

    Article  Google Scholar 

  • He S, Mrad RB (2005) Large-stroke microelectrostatic actuators for vertical translation of micromirrors used in adaptive optics. IEEE Trans Ind Electron 52(4):974–983

    Article  Google Scholar 

  • He S, Mrad RB (2008) Design, modeling, and demonstration of a MEMS repulsive-force out-of-plane electrostatic micro actuator. J Microelectromechanical Syst 17(3):532–547

    Article  Google Scholar 

  • He S, Mrad RB, Chang JS (2010) Development of a high-performance microelectrostatic repulsive-force rotation actuator. J Microelectromechanical Syst 19(3):561–569

    Article  Google Scholar 

  • Ho J, Haesoo K, Seung J, Lee K, Hyeon C, Jae J, Park H (2016) Electromagnetically actuated biaxial scanning micromirror fabricated with silicon on glass wafer. Microsyst Technol 1–11. doi:10.1007/s00542-016-2949-5

  • Jeong JW, Kim S, Solgaard O (2012) Split-frame gimbaled two-dimensional MEMS scanner for miniature dual-axis confocal microendoscopes fabricated by front-side processing. J Microelectromechanical Syst 21(2):308–315

    Article  Google Scholar 

  • Leahy S, Lai Y (2016) An hourglass design with electrokinetic sampling and electrothermal actuation for micro biosensors. Sens Actuators B Chem 223:123–130

    Article  Google Scholar 

  • Liu B, Li D, Yang X, Li X (2006) Design and fabrication of a micro electromagnetic actuator. In: Proceedings of 1st IEEE International Conference on Nano Micro Engineered and Molecular Systems 1st IEEE-NEMS, pp 353–356

  • Loctite 312 (2004) Technical Data Sheet, Loctite [Online]

  • Loctite 736 (2004) Technical Data Sheet, Loctite [Online]

  • Ra H, Piyawattanametha W, Taguchi Y, Lee D, Mandella MJ, Solgaard O (2007) Two-dimensional MEMS scanner for dual-axes confocal microscopy. J Microelectromechanical Syst 16(4):969–976

    Article  Google Scholar 

  • Sadat SH, Kamiya D, Bagheri S, Horie M (2008) 2 Degree-of-freedom spiral micromirror manipulator. J Adv Mech Des Syst Manuf 2(2):265–270

    Article  Google Scholar 

  • Sadat SH, Kamiya D, Horie M (2009) Large-deflection spiral-shaped micromirror actuator. J Microelectromechanical Syst 18(6):1357–1364

    Article  Google Scholar 

  • Sadler DJ, Liakopoulos TM, Ahn CH (2000) Universal electromagnetic microactuator using magnetic interconnection concepts. J Microelectromechanical Syst 9(4):460–468

    Article  Google Scholar 

  • Solgaard O, Godil AA, Howe RT, Lee LP, Peter YA, Zappe H (2014) Optical MEMS: from micromirrors to complex systems. J Microelectromechanical Syst 23(3):517–538

    Article  Google Scholar 

  • Streque J, Talbi A, Pernod P, Preobrazhensky V (2012a) Pulse-driven magnetostatic micro-actuator array based on ultrasoft elastomeric membranes for active surface applications. J. Micromechanics Microengineering 22:95020

    Article  Google Scholar 

  • Streque J, Talbi A, Bonnerot C, Pernod P, Preobrazhensky V (2012) Magnetostatic micro-actuator based on ultrasoft elastomeric membrane and copper—permalloy electrodeposited structures. In: 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems, pp 1157–1160

  • Tang T, Fang W (2011) Magnetostatic torsional actuator with embedded nickel structures for the improvement of driving force and wobble. J Micromechanics Microengineering 21:095007

    Article  Google Scholar 

  • Van Kessel PF, Hornbeck LJ, Meier RE, Douglass MR (1998) A MEMS-based projection display. Proc IEEE 86(8):1687–1704

    Article  Google Scholar 

  • Wang Y, Gokdel YD, Triesault N, Wang L (2014) Magnetic-actuated stainless steel scanner for two-photon hyperspectral fluorescence microscope. J Microelectromechanical Syst 23(5):1208–1218

    Article  Google Scholar 

  • Weber N, Hertkorn D, Zappe H, Seifert A (2012a) Polymer/silicon hard magnetic micromirrors. J Microelectromechanical Syst 21(5):1098–1106

    Article  Google Scholar 

  • Weber N, Zappe H, Seifert A (2012b) An all-nickel magnetostatic MEMS scanner. J Micromechanics Microengineering 22(12):125008

    Article  Google Scholar 

  • Xue Y, He S (2017) A translation micromirror with large quasi-static displacement andhigh surface quality. J Micromechanics Microengineering 27(1):015009

    Article  Google Scholar 

  • Yang H-A, Fang W (2006) A novel coil-less lorentz force 2D scanning mirror using eddy current. In: 19th IEEE International Conference on Micro Electro Mechanical Systems, vol 16, no 3, pp 511–520

  • Yang Z, Jeong B, Vakakis A, Kim S (2015) A tip-tilt-piston micromirror with an elastomeric universal joint fabricated via micromasonry. J Microelectromechanical Syst 24(2):262–264

    Article  Google Scholar 

  • Zhou L, Kahn JM, Pister KSJ (2006) Scanning micromirrors fabricated by an SOI/SOI wafer-bonding process. J Microelectromechanical Syst 15(1):24–32

    Article  Google Scholar 

  • Zine-El-Abidine I, Okoniewski M (2007) A tunable radio frequency MEMS inductor using MetalMUMPs. J Micromechanics Microengineering 17(11):2280–2287

    Article  Google Scholar 

  • Zuo H, He S (2016) FPCB micromirror-based laser projection availability indicator. IEEE Trans Ind Electron 63(5):3009–3018

    Article  Google Scholar 

  • Zygo Nexview 3D optical surface profiler (2017) [Online]. http://www.zygo.com/?/met/profilers/nexview/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyuan He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., He, S. Magnetic field assisted bonding technology for released micro actuator and mirror surface. Microsyst Technol 23, 4941–4955 (2017). https://doi.org/10.1007/s00542-017-3432-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3432-7

Keywords

Navigation